Skip to main content
Log in

Zinc oxide thin films deposited by sol–gel spin-coating technique for propane and carbon monoxide sensing applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Undoped zinc oxide (ZnO) films were deposited on soda-lime glass substrates by utilizing sol–gel spin coating method. Zinc acetate dihydrate, 2-metoxietanol and monoethanolamine were used as precursor, solvent and surfactant, respectively. XRD analysis confirms the ZnO wurtzite structure with (002) as the preferential orientation. SEM studies show the formation of porous and spherical grains with a grain size distribution from 20 to 60 nm. Raman spectroscopy confirms the crystallization and structural disorder of all ZnO sensors. Sensing responses of all ZnO films were obtained for both carbon monoxide (CO) and propane (C3H8) gases at different gas concentrations and operating temperatures. The highest sensing responses of ~ 35 and ~ 1400 were obtained for films deposited at 4000 rpm and exposed a CO and C3H8, respectively. The behavior of sensing responses is explained in detail based on the structural and morphological properties and the improvement in the structural properties and sensing responses is explained based on the spin coater rotation speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available in this article.

References

  1. M. Stuermer, G. Schwerhoff, Non-renewable resources, extraction technology, and endogenous growth. (2015) (FRB of Dallas Working Paper No. 1506) https://doi.org/10.24149/wp1506r1.

  2. P. Schou, Environ. Resource Econ. (2000). https://doi.org/10.1023/a:1008359225189

    Article  Google Scholar 

  3. H. Hale, Nonrenewable resources and the inevitability of outcomes. Monist 94, 369–390 (2011)

    Article  Google Scholar 

  4. R.A. Epstein, Carbon Dioxide: Our Newest Pollutant (Suffolk U. L. Rev, 2010), p.XJIII

    Google Scholar 

  5. J.R. Goldsmith, S.A. Landaw, Science (1968). https://doi.org/10.1126/science.162.3860.1352

    Article  PubMed  Google Scholar 

  6. M.A. Elliott, G.J. Nebel, F.G. Rounds, J. Air Pollut. Control Assoc. 5, 103–108 (1955). https://doi.org/10.1080/00966665.1955.10467686

    Article  CAS  Google Scholar 

  7. M. Gardon, J.M. Guilemany, J. Mater. Sci. Mater. Electron. (2012). https://doi.org/10.1007/s10854-012-0974-4

    Article  Google Scholar 

  8. V.R. Shinde, T.P. Gujar, C.D. Lokhande, Sens. Actuators B Chem. (2007). https://doi.org/10.1016/j.snb.2006.10.003

    Article  Google Scholar 

  9. S.M. Sze, Semiconductor Sensors, 1st edn. (Wiley, New York, NY, USA, 1994), pp.9–10

    Google Scholar 

  10. J. Kukkola, J. Mäklin, N. Halonen, T. Kyllönen, G. Tóth, M. Szabó, A. Shchukarev, J.P. Mikkola, H. Jantunen, K. Kordás, Sens. Actuators B Chem. (2011). https://doi.org/10.1016/j.snb.2010.10.043

    Article  Google Scholar 

  11. N.A. Pandit, T. Ahmad, Molecules (2022). https://doi.org/10.3390/molecules27207038

    Article  PubMed  PubMed Central  Google Scholar 

  12. S. Ramanavicius, A. Jagminas, A. Ramanavicius, Coatings (2022). https://doi.org/10.3390/coatings12050699

    Article  Google Scholar 

  13. K.G. Krishna, G. Umadevi, S. Parne, N. Pothukanuri, J. Mater. Chem. C. (2023). https://doi.org/10.1039/D2TC04690C

    Article  Google Scholar 

  14. G. Dutta, A. Sugumaran, J. Drug. Deliv. Sci. Technol. (2021). https://doi.org/10.1016/j.jddst.2021.102853

    Article  Google Scholar 

  15. R. Huang, S. Zhang, W. Zhang, X. Yang, I.E.T. Collab, Intell. Manuf. (2021). https://doi.org/10.1049/cim2.12029

    Article  Google Scholar 

  16. C. Casteleiro, H.L. Gomes, P. Stallinga, L. Bentes, R. Ayouchi, R. Schwarz, J. Non-Cryst. (2008). https://doi.org/10.1016/j.jnoncrysol.2007.10.059

    Article  Google Scholar 

  17. M. Ding, Z. Guo, L. Zhou, X. Fang, L. Zhang, L. Zeng, L. Xie, H. Zhao, Crystals (2018). https://doi.org/10.3390/cryst8050223

    Article  Google Scholar 

  18. S. Pati, P. Banerji, S.B. Majumder, RSC Adv. (2015). https://doi.org/10.1039/C5RA10919A

    Article  Google Scholar 

  19. K.D.A. Kumar, S. Valanarasu, A. Kathalingam, V. Ganesh, M. Shkir, S. AlFaify, Appl. Phys. A (2017). https://doi.org/10.1007/s00339-017-1426-z

    Article  Google Scholar 

  20. M.C. Huang, J.C. Lin, S.H. Cheng, W.H. Weng, Surf. Interface Anal. (2017). https://doi.org/10.1002/sia.6176

    Article  Google Scholar 

  21. M. Jabeen, A. Iqbal, R.V. Kumar, M. Ahmed, Sens. Bio-Sens. Res. (2019). https://doi.org/10.1016/j.sbsr.2019.100293

    Article  Google Scholar 

  22. W. Bhutto, A. Majid, A. Nizamani, H. Saleem, M. Khaskheli, A. Ghulam, R. Das, U.A. Khan, S. Saleem, Int. J. Comput. Sci. Netw. Secur. 19, 135 (2019)

    Google Scholar 

  23. W. Daranfed, N. Guermat, I. Bouchama, K. Mirouh, S. Dilmi, M.A. Saeed, Nano-Electron. Phys. (2019). https://doi.org/10.21272/jnep.11(6).06001

    Article  Google Scholar 

  24. S.M. Mohammad, N.M. Abd-Alghafour, R.A. Talib, Z. Hassan, N.M. Ahmed, A.A. Abuelsamen, N. Afzal, Mater Res Express. (2018). https://doi.org/10.1088/2053-1591/aad76b

    Article  Google Scholar 

  25. M.I. Khan, K.A. Bhatti, R. Qindeel, N. Alonizan, H.S. Althobaiti, Results Phys. (2017). https://doi.org/10.1016/j.rinp.2016.12.029

    Article  Google Scholar 

  26. L. Znaidi, Sol-gel-deposited ZnO thin films: a review. Mat. Sci. Eng. B. (2010). https://doi.org/10.1016/j.mseb.2010.07.001

    Article  Google Scholar 

  27. A. Singh, A. Kumar, N. Suri, S. Kumar, M. Kumar, P.K. Khanna, D. Kumar, J. Optoelectron. Adv. Mater. 11(6), 790 (2009)

    CAS  Google Scholar 

  28. M.A. Butt, Coatings (2022). https://doi.org/10.3390/coatings12081115

    Article  Google Scholar 

  29. C.J. Brinker, A.J. Hurd, G.C. Frye, P.R. Schunk, C.S. Ashley, J. Ceram. Soc. Japan. (1991). https://doi.org/10.2109/jcersj.99.86210.2109/jcersj.99.862

    Article  Google Scholar 

  30. H.F. McMurdie, M.C. Morris, E.H. Evans, B. Paretzkin, W. WongNg, L. Ettlinger, C.R. Hubbard, Standard X-Ray Diffraction Powder Patterns from the JCPDS Research Associateship (Cambridge University Press, Cambridge UK, 1986), pp.64–77

    Google Scholar 

  31. M. Saleem, L. Fang, H.B. Ruan, F. Wu, Q.L. Huang, C.L. Xu, C.Y. Kong, Intl. J. Phy. Sci. (2012). https://doi.org/10.5897/IJPS12.219

    Article  Google Scholar 

  32. B.D. Cullity, S.R. Stock, Elements of X-ray diffraction, 3rd edn. (Prentice Hall, New Jersey, 2001)

    Google Scholar 

  33. S. Ilican, Y. Caglar, M. Caglar, J. Optoelectro. (2008). https://doi.org/10.1088/1742-6596/817/1/012025

    Article  Google Scholar 

  34. B. Sathya, D.B. Anburaj, V. Porkalai, G. Nedunchezhian, J. Mater. Sci. Mater. Electron. (2017). https://doi.org/10.1007/s10854-016-6278-3

    Article  Google Scholar 

  35. L. Bergman, X.B. Chen, J.H. Morrison, J.L. Hoeck, Appl. Phys. 10(1063/1), 2126784 (2005)

    Google Scholar 

  36. S. Guo, Z. Du, S. Dai, Phys. Status Solidi. B. Basic. Res. (2009). https://doi.org/10.1002/pssb.200945192

    Article  Google Scholar 

  37. K.A. Alim, V.A. Fonoberov, M. Shamsa, J.A. Balandin, Appl. Phys. 10(1063/1), 1944222 (2005)

    Google Scholar 

  38. V. Russo, M. Ghidelli, P. Gondoni, C.S. Casari, L.A. Bassi, J. Appl. Phys. 10(1063/1), 1944222 (2014)

    Google Scholar 

  39. H. Gómez-Pozos, E. Arredondo, A.M. Álvarez, R. Biswal, Y. Kudriavtsev, J. Pérez, Y.L. Casallas-Moreno, M.O. Amador, Materials (2016). https://doi.org/10.3390/ma9020087

    Article  PubMed  PubMed Central  Google Scholar 

  40. H. Li, J. Wang, H. Liu, C. Yang, H. Xu, X. Li, H. Cui, Vacuum (2004). https://doi.org/10.1016/j.vacuum.2004.08.003

    Article  Google Scholar 

  41. D.B. Hall, P. Underhill, J.M. Torkelson, Polym. Eng. Sci. Eng. Sci. (1998). https://doi.org/10.1002/pen.10373

    Article  Google Scholar 

Download references

Acknowledgements

We thank Karina Aleman, Lizzeth Martinez for providing the space for spin coating, Emma Luna—Arredondo for solution preparation, A. Tavira-Fuentes for XRD and the technical assistance for sensing by Miguel Ángel Luna. Finally. This work was supported by PRODEP.

Funding

This work was supported by the Programa de Mejoramiento del Profesorado from the Secretaria de Educación Pública México, PROMEP/103.5/11/0144.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the analysis of the study. Stephani Riojano performed SEM and XRD calculations, Tangirala Venkata Krishna Karthik contributed to Raman analysis, Lizzeth Martinez and Arturo Maldonado conducted analysis, provided English revision, and finalized the manuscript. Heberto Gomez played a key role in the overall design of the research, contributed to the analysis and interpretation of XRD, SEM, gas sensing response and participated in finalizing the manuscript. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Heberto Gómez-Pozos.

Ethics declarations

Competing interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojano Chávez, S.M., Ayala, L.M., Karthik, T.V.K. et al. Zinc oxide thin films deposited by sol–gel spin-coating technique for propane and carbon monoxide sensing applications. J Mater Sci: Mater Electron 35, 797 (2024). https://doi.org/10.1007/s10854-024-12502-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12502-x

Navigation