Skip to main content
Log in

Synthesis of multi-walled carbon nanotubes on nichrome and nickel by using rapid thermal processing furnace

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A new method has been evolved to synthesize multi wall carbon nano tubes (MWCNTs) by using rapid thermal process furnace. Nichrome and nickel catalysts are deposited on silicon substrates by electron beam evaporation technique. Acetylene and argon gases are used, in the synthesis of MWCNTs, as precursor and carrier gas respectively, at a temperature of 750 °C for 30 min. To analyze the MWCNTs, synthesized in the present study, they are subjected to various characterizations namely Raman spectroscopy, Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray Analysis (EDXA) and High Resolution Transmission Electron Microscopy (HRTEM). FESEM images revealed that carbon nanotubes have diameter ranging from 25 to 75 nm and HRTEM showed that these nanotubes have up to 80 number of walls. Nichrome is the preferred catalyst in terms of yield and growth uniformity of MWCNTs, based on the FESEM and EDXA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors comply to the Research Data Policy and Data Availability Statements.

References

  1. S. Iijima, Nature 354, 56–58 (1991). https://doi.org/10.1038/354056a0

    Article  CAS  Google Scholar 

  2. S. Iijima, T. Ichihashi, Nature 363, 603–605 (1993). https://doi.org/10.1038/363603a0

    Article  CAS  Google Scholar 

  3. M. Dresselhaus, G. Dresselhaus, J. Electroceram. 1, 273–286 (1997). https://doi.org/10.1023/A:1009935827658

    Article  CAS  Google Scholar 

  4. R. Ramasubramaniam, J. Chen, H. Liu Crossmark, Appl. Phys. Lett. 83, 2928–2930 (2003). https://doi.org/10.1063/1.1616976

    Article  CAS  Google Scholar 

  5. M.S. Dresselhaus, G. Dresselhaus, J.C. Charlier, E. Hernandez, Philos. Trans. Math. Phys. Eng. Sci. 362, 2065–2098 (2004). https://doi.org/10.1098/rsta.2004.1430

    Article  CAS  Google Scholar 

  6. J. Hone, M.C. Llaguno, M.J. Biercuk, A.T. Johnson, B. Batlogg, Z. Benes, J.E. Fischer, Appl. Phys. A 74, 339–343 (2002). https://doi.org/10.1007/s003390201277

    Article  CAS  Google Scholar 

  7. M. Ahlskog, P. Hakonen, M. Paalanen, L. Roschier, R. Tarkiainen, J. Low Temp. Phys. 124, 335–352 (2001). https://doi.org/10.1023/A:1017550607311

    Article  CAS  Google Scholar 

  8. E.T. Thostenson, T.W. Chou, J. Phys. D Appl. Phys. (2002). https://doi.org/10.1088/0022-3727/35/16/103

    Article  Google Scholar 

  9. F. Ye, Z. Ge, Y. Ding, J. Yang, Particuology. 15, 56–60 (2014). https://doi.org/10.1016/j.partic.2013.05.001

    Article  CAS  Google Scholar 

  10. R. Andrews, D. Jacques, D. Qian, T. Rantell, Acc. Chem. Res. 35, 1008–1017 (2002). https://doi.org/10.1021/ar010151m

    Article  CAS  PubMed  Google Scholar 

  11. R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Science 297, 787–792 (2002). https://doi.org/10.1126/science.1060928

    Article  CAS  PubMed  Google Scholar 

  12. T. Guo, P. Nikolaev, A.G. Rinzler, D. Tomanek, D.T. Colbert, R.E. Smalley, J. Phys. Chem. 99, 10694–10697 (1995). https://doi.org/10.1021/j100027a002

    Article  CAS  Google Scholar 

  13. J. Chrzanowska, J. Hoffman, A. Małolepszy, M. Mazurkiewicz, T.A. Kowalewski, Z. Szymanski , L. Stobinski, Phys. Status Solidi B 8, 1860–1867 (2015). https://doi.org/10.1002/pssb.201451614

    Article  CAS  Google Scholar 

  14. T. Yanase, T. Miura, T. Shiratori, M. Weng, T. Nagahama, T. Shimada, C J. Carbon Res. 5, 46 (2019). https://doi.org/10.3390/c5030046

    Article  CAS  Google Scholar 

  15. Y. Yang, H. Zhang, Y. Yan, Comp. B 160, 369–383 (2019). https://doi.org/10.1016/j.compositesb.2018.12.100

    Article  CAS  Google Scholar 

  16. C. Liu, H. Cheng, Mater. Today. 16, 19–28 (2013). https://doi.org/10.1016/j.mattod.2013.01.019

    Article  CAS  Google Scholar 

  17. J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Science 287, 622–625 (2000). https://doi.org/10.1126/science.287.5453.622

    Article  CAS  PubMed  Google Scholar 

  18. C.J. Lee, J. Park, J.A. Yu, Chem. Phys. Lett. 360, 250–255 (2002). https://doi.org/10.1016/S0009-2614(02)00831-X

    Article  CAS  Google Scholar 

  19. C.H. Kiang, J. Chem. Phys. 113, 4763–4766 (2000). https://doi.org/10.1063/1.1287850

    Article  CAS  Google Scholar 

  20. A.N. Andriotis, M. Menon, G. Froudakis, Phys. Rev. Lett. 85, 3193–3196 (2000). https://doi.org/10.1103/PhysRevLett.85.3193

    Article  CAS  PubMed  Google Scholar 

  21. J. Sengupta, C. Jacob, J. Nanoparticle Res. 12, 457–465 (2010). https://doi.org/10.48550/arXiv.1908.00391

    Article  CAS  Google Scholar 

  22. X. Yan, Y. Wu, B. Wang, Q. Zhang, R. Zheng, X. Wu, G. Cheng, Appl. Surf. Sci. 450, 38–45 (2018). https://doi.org/10.1016/j.apsusc.2018.04.114

    Article  CAS  Google Scholar 

  23. P.M. Ajayan, Chem. Rev. 99, 1787–1800 (1999). https://doi.org/10.1021/cr970102g

    Article  CAS  PubMed  Google Scholar 

  24. A.C. Ferrari, J. Robertson, Philos. Trans. Math. Phys. Eng. Sci. 362, 2477–2512 (2000). https://doi.org/10.1098/rsta.2004.1452

    Article  Google Scholar 

  25. L.G. Cançado, A. Jorio, E.H. Martins Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V.O. Moutinho, A. Lombardo, T.S. Kulmala, A.C. Ferrari, Nano Lett. 11, 3190–3196 (2004). https://doi.org/10.1021/nl201432g

    Article  CAS  Google Scholar 

  26. E. Mansfield, A. Kar, S.A. Hooker, Anal. Bioanal Chem. 396, 1071–1077 (2010). https://doi.org/10.1007/s00216-009-3319-2

    Article  CAS  PubMed  Google Scholar 

  27. A.C. Dillon, M. Yudasaka, M.S. Dresselhaus, J. Nanosci. Nanotech. 4, 691–703 (2004). https://doi.org/10.1166/jnn.2004.116

    Article  CAS  Google Scholar 

  28. N. Sano, S. Yamamoto, H. Tamon, Chem. Eng. J. 242, 278–284 (2014). https://doi.org/10.1016/j.cej.2013.12.073

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Deputy Director, OSA-LEOS and Director, LEOS for their support and encouragement.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the study (concept, design, materials preparation, data collection and analysis). The manuscript was written by Sakshi Nigavekar and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Girish M. Gouda.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

The authors compliance with ethical standards as per the journal policy.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nigavekar, S., Das, D., Madhumalathi, G.R. et al. Synthesis of multi-walled carbon nanotubes on nichrome and nickel by using rapid thermal processing furnace. J Mater Sci: Mater Electron 35, 714 (2024). https://doi.org/10.1007/s10854-024-12467-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12467-x

Navigation