Skip to main content
Log in

Chloride incorporation for the stability improvement of the MAPI hybrid perovskite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In recent years, perovskite thin films have attracted much attention in various industries due to their versatile applications. However, the stability problem of perovskite-based solar cells, caused by the susceptibility to degradation due to UV light and moisture, remains a persistent challenge despite the efforts made. This study focuses on the deterioration of CH3NH3PbI3 perovskite thin films, and examines the impact of UV irradiation on their structural, morphological and optical characteristics. For that many CH3NH3Pb(I1−xClx)3 samples with different Cl contents have been synthesized and analyzed by XRD, SEM, UV–Vis Spectroscopy and FTIR technics. The main finding of this study is to demonstrate that it is possible to improve the stability of MAPbI3 under UV light by integration of adequate chloride concentration into the perovskite structure. In fact, experimental observations approve clearly that the stability of CH3NH3Pb(I1−xClx)3 perovskite is significantly improved when the chloride doping concentration is above 20%. Furthermore, the XRD analysis show clearly that the observed UV stability improvement is directly attributed to a structural transition from the tetragonal to the more stable cubic phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  1. A.K. Jena, A. Kulkarni, T. Miyasaka, Halide perovskite photovoltaics: background, status, and future prospects. Chem. Rev. 119(5), 3036–3103 (2019). https://doi.org/10.1021/acs.chemrev.8b00539

    Article  CAS  PubMed  Google Scholar 

  2. S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341–344 (2013). https://doi.org/10.1126/science.1243982

    Article  CAS  PubMed  Google Scholar 

  3. S. De Wolf, J. Holovsky, S.-J. Moon, P. Löper, B. Niesen, M. Ledinsky, F.-J. Haug, J.-H. Yum, C. Ballif, Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5(6), 1035–1039 (2014). https://doi.org/10.1021/jz500279b

    Article  CAS  PubMed  Google Scholar 

  4. G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J. Snaith, Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7(3), 982–988 (2014). https://doi.org/10.1039/C3EE43822H

    Article  CAS  Google Scholar 

  5. S.R. Kumavat, Y. Sonvane, D. Singh, S.K. Gupta, Two-dimensional CH3NH3PbI3 with high efficiency and superior carrier mobility: a theoretical study. J. Phys. Chem. C 123(9), 5231–5239 (2019). https://doi.org/10.1021/acs.jpcc.8b11427

    Article  CAS  Google Scholar 

  6. Y.-F. Gu, H.-J. Du, N.-N. Li, L. Yang, C.-Y. Zhou, Effect of carrier mobility on performance of perovskite solar cells. Chin. Phys. B 28(4), 048802 (2019). https://doi.org/10.1088/1674-1056/28/4/048802

    Article  CAS  Google Scholar 

  7. L.J. Phillips, A.M. Rashed, R.E. Treharne, J. Kay, P. Yates, I.Z. Mitrovic, A. Weerakkody, S. Hall, K. Durose, Maximizing the optical performance of planar CH3NH3PbI3 hybrid perovskite heterojunction stacks. Sol. Energy Mater. Sol. Cells 147, 327–333 (2016). https://doi.org/10.1016/j.solmat.2015.10.007

    Article  CAS  Google Scholar 

  8. T. Etienne, E. Mosconi, F. De Angelis, Dynamical origin of the Rashba effect in organohalide lead perovskites: a key to suppressed carrier recombination in perovskite solar cells? J. Phys. Chem. Lett. 7(9), 1638–1645 (2016). https://doi.org/10.1021/acs.jpclett.6b00564

    Article  CAS  PubMed  Google Scholar 

  9. M.I. Saidaminov, A.L. Abdelhady, B. Murali, E. Alarousu, V.M. Burlakov, W. Peng, I. Dursun, L. Wang, Y. He, G. Maculan, A. Goriely, T. Wu, O.F. Mohammed, O.M. Bakr, High quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat. Commun. 6, 7586 (2015). https://doi.org/10.1038/ncomms8586

    Article  PubMed  Google Scholar 

  10. P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B.N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, Q. Bao, Two-dimensional ch3nh3pbi3perovskite nanosheets for ultrafast pulsed fiber lasers. ACS Appl. Mater. Interfaces 9, 12759–12765 (2017). https://doi.org/10.1021/acsami.7b01709

    Article  CAS  PubMed  Google Scholar 

  11. H.S. Rao, W.G. Li, B.X. Chen, D.B. Kuang, C.Y. Su, In situ growth of 120 cm2 CH3NH3PbBr 3 perovskite crystal film on FTO glass for narrowband-photodetectors. Adv. Mater. (2017). https://doi.org/10.1002/adma.201602639

    Article  PubMed  Google Scholar 

  12. X.G. Sun, Z.F. Shi, Y. Li, L.Z. Lei, S. Li, D. Wu, T.T. Xu, Y.T. Tian, X.J. Li, Effect of CH3NH3I concentration on the physical properties of solution-processed organometal halide perovskite. J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2017.02.256

    Article  Google Scholar 

  13. G. Li, Z.K. Tan, D. Di, M.L. Lai, L. Jiang, J.H.W. Lim, R.H. Friend, N.C. Greenham, Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix. Nano Lett. 15, 2640–2644 (2015). https://doi.org/10.1021/acs.nanolett.5b00235

    Article  CAS  PubMed  Google Scholar 

  14. Y. Zhao, K. Zhu, Organic–inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem. Soc. Rev. 45, 655–689 (2015). https://doi.org/10.1039/C4CS00458B

    Article  Google Scholar 

  15. M.D. McGehee, Perovskite solar cells: continuing to soar. Nat. Mater. 13, 845–846 (2014). https://doi.org/10.1038/nmat4050

    Article  CAS  PubMed  Google Scholar 

  16. A. Uddin, M. Upama, H. Yi, L. Duan, Encapsulation of organic and perovskite solar cells: a review. Coatings 9(2), 65 (2019). https://doi.org/10.3390/coatings9020065

    Article  CAS  Google Scholar 

  17. H. Lu, A. Krishna, S.M. Zakeeruddin, M. Grätzel, A. Hagfeldt, Compositional and interface engineering of organic-inorganic lead halide perovskite solar cells. iScience 23(8), 101359 (2020). https://doi.org/10.1016/j.isci.2020.101359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. D. Ghosh, C.M. Perez, O. Prezhdo, W. Nie, S. Tretiak, A.J. Neukirch, Impact of composition engineering on charge carrier cooling in hybrid perovskites: computational insights. J. Mater. Chem. C 10(25), 9563–9572 (2022). https://doi.org/10.1039/D2TC01413K

    Article  CAS  Google Scholar 

  19. D. Liu, C. Yang, R.R. Lunt, Halide perovskites for selective ultraviolet-harvesting transparent photovoltaics. Joule 2, 1827–1837 (2018)

    Article  CAS  Google Scholar 

  20. G. Niu, X. Guo, L. Wang, Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 3(17), 8970–8980 (2015). https://doi.org/10.1039/C4TA04994B

    Article  CAS  Google Scholar 

  21. A. Fakharuddin, F. De Rossi, T.M. Watson, L. Schmidt-Mende, R. Jose, Research update: behind the high efficiency of hybrid perovskite solar cells. APL Mater. 4(9), 091505 (2016). https://doi.org/10.1063/1.4962143

    Article  CAS  Google Scholar 

  22. T.A. Berhe, W.-N. Su, C.-H. Chen, C.-J. Pan, J.-H. Cheng, H.-M. Chen, M.-C. Tsai, L.-Y. Chen, A.A. Dubale, B.-J. Hwang, Organometal halide perovskite solar cells: degradation and stability. Energy Environ. Sci. 9(2), 323–356 (2016). https://doi.org/10.1039/C5EE02733K

    Article  CAS  Google Scholar 

  23. T.-Y. Zhu, D.-J. Shu, Polarization-controlled surface defect formation in a hybrid perovskite. J. Phys. Chem. Lett. 12(16), 3898–3906 (2021). https://doi.org/10.1021/acs.jpclett.1c00702

    Article  CAS  PubMed  Google Scholar 

  24. J. Huang, S. Tan, P.D. Lund, H. Zhou, Impact of H2O on organic-inorganic hybrid perovskite solar cells. Energy Environ. Sci. 10(11), 2284–2311 (2017). https://doi.org/10.1039/C7EE01674C

    Article  Google Scholar 

  25. A.A. Melvin, V.D. Stoichkov, J. Kettle, D. Mogilyansky, E.A. Katz, I. Visoly-Fisher, Lead iodide as a buffer layer in UV-induced degradation of CH3NH3PbI3 films. Sol. Energy 159, 794–799 (2018). https://doi.org/10.1016/j.solener.2017.11.054

    Article  CAS  Google Scholar 

  26. N. Aristidou, C. Eames, I. Sanchez-Molina, X. Bu, J. Kosco, M.S. Islam, S.A. Haque, Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nat. Commun. 8(1), 15218 (2017). https://doi.org/10.1038/ncomms15218

    Article  PubMed  PubMed Central  Google Scholar 

  27. D. Bryant, N. Aristidou, S. Pont, I. Sanchez-Molina, T. Chotchunangatchaval, S. Wheeler, J.R. Durrant, S.A. Haque, Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells. Energy Environ. Sci. 9(5), 1655–1660 (2016). https://doi.org/10.1039/C6EE00409A

    Article  CAS  Google Scholar 

  28. E.J. Juarez-Perez, L.K. Ono, I. Uriarte, E.J. Cocinero, Y. Qi, Degradation mechanism and relative stability of methylammonium halide based perovskites analyzed on the basis of acid-base theory. ACS Appl. Mater. Interfaces 11(13), 12586–12593 (2019). https://doi.org/10.1021/acsami.9b02374

    Article  CAS  PubMed  Google Scholar 

  29. N. Ahn, K. Kwak, M.S. Jang, H. Yoon, B.Y. Lee, J.-K. Lee, P.V. Pikhitsa, J. Byun, M. Choi, Trapped charge-driven degradation of perovskite solar cells. Nat. Commun. 7(1), 13422 (2016). https://doi.org/10.1038/ncomms13422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. A. El-Yahyaoui, B. Jaber, L. Laanab, M. El Mahi, E.M. Lotfi, The effect of temperature and distance of hot airflow on the quality of MAPbCl3 thin films grown by sol–gel deposition. J. Mater. Sci. 34, 252 (2023)

    CAS  Google Scholar 

  31. S.-W. Lee, S. Kim, S. Bae, K. Cho et al., UV degradation and recovery of perovskite solar cells. Sci. Rep. 6, 38150 (2016). https://doi.org/10.1038/srep38150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. W. Li, W. Zhang, S. Van Reenen, R.J. Sutton, J. Fan, A.A. Haghighirad, M.B. Johnston, L. Wang, H.J. Snaith, Enhanced UV-light stability of planar heterojunction perovskite solar cells with Caesium Bromide interface modification. Energy Environ. Sci. 9, 490–498 (2016). https://doi.org/10.1039/C5EE03522H

    Article  CAS  Google Scholar 

  33. Y. He, S. Xin, Y. Ren, S. Li, J. He, J. Li, Fu. Chunlin, Effects of anti-solvent temperature on microstructures and photovoltaic properties of TiO2@MAPbI3 core-shell nanowire arrays. Physica E 147, 115610 (2023)

    Article  CAS  Google Scholar 

  34. M. Ouafi, B. Jaber, L. Atourki, R. Bekkari, L. Laanab, Improving UV stability of MAPbI3 perovskite thin films by bromide incorporation. J. Alloys Compd. 746, 391–398 (2018)

    Article  CAS  Google Scholar 

  35. R. Bekkari, L. Laânab, B. Jaber, Effect of the bivalent dopant ionic radius, electronegativity and concentration on the physical properties of the sol–gel-derived ZnO thin films. J. Mater. Sci. (2020). https://doi.org/10.1007/s10854-020-04078-z

    Article  Google Scholar 

  36. X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai, Y. Lin, H. Wei, X.C. Zeng, J. Huang, Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2, 17102 (2017)

    Article  CAS  Google Scholar 

  37. D. Yerezhep, Z. Omarova, A. Aldiyarov, A. Shinbayeva, N. Tokmoldin, IR spectroscopic degradation study of thin organometal halide perovskite films. Molecules 28, 1288 (2023). https://doi.org/10.3390/molecules28031288Academic

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Center for Scientific and Technical Research (CNRST) of Rabat- Morocco for allowing us the use of all technical facilities of the UATRS Division.

Funding

No funding received for this work.

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm contribution to the paper as follows: Study conception and experimental preparations: Asmae EL-YAHYAOUI; Data collection: Asmae EL-YAHYAOUI, El Mostapha LOTFI; Analysis and interpretation of results: Asmae EL-YAHYAOUI, Boujemaâ JABER, Larbi LAANAB; Manuscript write out: Asmae EL-YAHYAOUI. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Asmae El-Yahyaoui.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical approval

Ethical approval is not applicable for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Yahyaoui, A., Jaber, B., Laanab, L. et al. Chloride incorporation for the stability improvement of the MAPI hybrid perovskite. J Mater Sci: Mater Electron 35, 798 (2024). https://doi.org/10.1007/s10854-024-12455-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12455-1

Navigation