Skip to main content
Log in

Effect of the bivalent dopant ionic radius, electronegativity and concentration on the physical properties of the sol–gel-derived ZnO thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study deals with the influence of the concentration and ionic radius of the bivalent dopant on the structural, morphological and optical properties of the sol–gel-derived ZnO thin films. For that, different concentrations of dopants with different radii (Ni2+, Cu2, Fe2+) have been chosen to synthesize many ZnO thin films. The X-ray diffraction confirms that all the obtained films exhibit a pure hexagonal wurtzite structure. Meanwhile, it appears that both the preferential film orientation and the crystal quality are strongly affected when varying the ionic radius or the concentration of dopant. We note also that the lattice parameters decrease when the electronegativity of the dopant increases. This behavior has been explained at the light of a simple schematic model, based on the electrostatic forces involved in chemical bonding. The Scherer formula reveals that the average size of the crystallites is ranged between 20 and 35 nm. On the other hand, as confirmed by the SEM analysis, all the deposited films present a compact, uniform and nanocrystalline morphology. Nonetheless, the optical analysis indicates that the Ni- and Fe-doped films are highly transparent (greater than 90%) in the visible region, while the Cu-doped ones exhibit the lowest transmission (about 76%). Additionally, a blue shift of the bandgap is noticed when doping with Ni or Fe, whereas the doping with Cu induces a red shift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. Bekkari, L. Laânab, D. Boyer, R. Mahiou, B. Jaber, Mater. Sci. Semicond. Process. 71, 181–187 (2017)

    CAS  Google Scholar 

  2. D. Sivaganesh, S. Saravanakumar, V. Sivakumar, K.S.S. Ali, E. Akapo, E. Alemayehu, R. Rajajeyaganthan, R. Saravanan, J. Mater. Sci. Mater. Electron. 30, 2966 (2019)

    CAS  Google Scholar 

  3. X. Wei, B. Man, C. Xue, C. Chen, M. Liu, Jpn. J. Appl. Phys. 45, 8586 (2006)

    CAS  Google Scholar 

  4. A. Mallick, D. Basak, Prog. Mater. Sci. 96, 86 (2018)

    CAS  Google Scholar 

  5. V.L. Patil, S.A. Vanalakar, P.S. Patil, J.H. Kim, Sens. Actuators B Chem. 239, 1185 (2017)

    CAS  Google Scholar 

  6. R. Haarindraprasad, U. Hashim, S.C.B. Gopinath, M. Kashif, P. Veeradasan, S.R. Balakrishnan, K.L. Foo, P. Poopalan, Y.K. Mishra, PLoS ONE 10, 1 (2015)

    Google Scholar 

  7. P.S. Shewale, Y.S. Yu, J. Alloys Compd. 654, 79 (2016)

    CAS  Google Scholar 

  8. V. Kumar, O.M. Ntwaeaborwa, H.C. Swart, J. Colloid Interface Sci. 465, 295 (2016)

    CAS  Google Scholar 

  9. M. Karimipour, M. Sadeghian, M. Molaei, J. Mater. Sci. Mater. Electron. 29, 13782 (2018)

    CAS  Google Scholar 

  10. M. Huang, S. Wang, G. Wan, X. Zhang, Y. Zhang, K. Ou, L. Yi, J. Mater. Sci. Mater. Electron. 29, 7213 (2018)

    CAS  Google Scholar 

  11. M. Xin, J. Theor. Appl. Phys. 12, 177 (2018)

    Google Scholar 

  12. M. Murugesan, D. Arjunraj, J. Mayandi, V. Venkatachalapathy, J.M. Pearce, Mater. Lett. 222, 50 (2018)

    CAS  Google Scholar 

  13. S. Zhang, N.D. Pham, T. Tesfamichael, J. Bell, H. Wang, Sustain. Mater. Technol. 18, e00078 (2018)

    CAS  Google Scholar 

  14. Z.N. Kayani, H. Bashir, S. Riaz, S. Naseem, Mater. Res. Bull. 115, 121 (2019)

    CAS  Google Scholar 

  15. S.I. Shanthi, S. Poovaragan, M.V. Arularasu, S. Nithya, R. Sundaram, C.M. Magdalane, K. Kaviyarasu, M. Maaza, J. Nanosci. Nanotechnol. 18, 5441 (2018)

    CAS  Google Scholar 

  16. M. Wu, S. Yu, G. Chen, L. He, L. Yang, W. Zhang, Appl. Surf. Sci. 324, 791 (2015)

    CAS  Google Scholar 

  17. T. Wakano, N. Fujimura, Y. Morinaga, N. Abe, A. Ashida, T. Ito, Phys. E Low-Dimens. Syst. Nanostruct. 10, 260 (2001)

    CAS  Google Scholar 

  18. K.T. Kim, G.H. Kim, J.C. Woo, C.I. Kim, Surf. Coatings Technol. 202, 5650 (2008)

    CAS  Google Scholar 

  19. M.G. Nair, M. Nirmala, K. Rekha, A. Anukaliani, Mater. Lett. 65, 1797 (2011)

    CAS  Google Scholar 

  20. H. Chen, J. Ding, S. Ma, Superlattices Microstruct. 49, 176 (2011)

    CAS  Google Scholar 

  21. S. Singhal, J. Kaur, T. Namgyal, R. Sharma, Phys. B Condens. Matter. 407, 1223 (2012)

    CAS  Google Scholar 

  22. H. Gómez-Pozos, E.J.L. Arredondo, A.M. Álvarez, R. Biswal, Y. Kudriavtsev, J.V. Pérez, Y.L. Casallas-Moreno, M.L.O. Amador, Materials (Basel) 9, 87 (2016)

    Google Scholar 

  23. P. Jongnavakit, P. Amornpitoksuk, S. Suwanboon, N. Ndiege, Appl. Surf. Sci. 258, 8192 (2012)

    CAS  Google Scholar 

  24. U. Alver, T. Kilinç, E. Bacaksiz, S. Nezir, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 138, 74 (2007)

    CAS  Google Scholar 

  25. D. Ali, M.Z. Butt, B. Arif, A.A. Al-Ghamdi, F. Yakuphanoglu, Phys. B Condens. Matter 506, 83 (2017)

    CAS  Google Scholar 

  26. O. Dimitrov, D. Nesheva, V. Blaskov, I. Stambolova, S. Vassilev, Z. Levi, V. Tonchev, Mater. Chem. Phys. 148, 712–719 (2014)

    CAS  Google Scholar 

  27. R. Bekkari, B. Jaber, H. Labrim, M. Ouafi, N. Zayyoun, L. Laânab, Int. J. Photoenergy 2019, 1 (2019)

    Google Scholar 

  28. J.P. Mathew, G. Varghese, J. Mathew, S.O.P. Trans, Appl. Phys. 1, 27 (2014)

    Google Scholar 

  29. K. Joshi, M. Rawat, S.K. Gautam, R.G. Singh, R.C. Ramola, F. Singh, J. Alloys Compd. 680, 252 (2016)

    CAS  Google Scholar 

  30. T. Srinivasulu, K. Saritha, K.T.R. Reddy, Mod. Electron. Mater. 3, 76–85 (2017)

    Google Scholar 

  31. B.R. Kumar, T.S. Rao, Dig. J. Nanomater. Bios. 6, 1281 (2011)

    Google Scholar 

  32. A. Sreedhar, J.H. Kwon, J. Yi, J.S. Kim, J.S. Gwag, Mater. Sci. Semicond. Process. 49, 8 (2016)

    CAS  Google Scholar 

  33. R. Bekkari, L. Laânab, B. Jaber, J. Chem. 4, 2289 (2016)

    Google Scholar 

  34. A.A. Othman, M.A. Ali, E.M.M. Ibrahim, M.A. Osman, J. Alloys Compd. 683, 399 (2016)

    CAS  Google Scholar 

  35. R. Raji, K.G. Gopchandran, Mater. Res. Express 4, 025002 (2017)

    Google Scholar 

  36. K. Ahn, T. Deutsch, Y. Yan, C. Jiang, C.L. Perkins, K. Ahn, T. Deutsch, Y. Yan, C. Jiang, C.L. Perkins, J. Turner, M. Al-jassim, J. Appl. Phys. 102, 023517 (2007)

    Google Scholar 

  37. G. Li, X. Zhu, X. Tang, W. Song, Z. Yang, J. Dai, Y. Sun, X. Pan, S. Dai, J. Alloys Compd. 509, 4816 (2011)

    CAS  Google Scholar 

  38. M. Öztas, M. Bedir, Thin Solid Films 516, 1703 (2008)

    Google Scholar 

  39. G. Li, X. Zhu, H. Lei, W. Song, Z. Yang, J. Dai, Y. Sun, X. Pan, S. Dai, J. Alloys Compd. 505, 434 (2010)

    CAS  Google Scholar 

  40. F. Boudjouan, A. Chelouche, T. Touam, D. Djouadi, Y. Ouerdane, Mater. Sci. Semicond. Process. 41, 382–389 (2016)

    CAS  Google Scholar 

  41. J.A. Najim, J.M. Rozaiq, Int. Lett. Chem. Phys. Astron. 15, 137 (2013)

    Google Scholar 

  42. Y.S. Kim, W.P. Tai, S.J. Shu, Thin Solid Films 491, 153 (2005)

    CAS  Google Scholar 

  43. R.K. Rajakarthikeyan, S. Muthukumaran, Opt. Mater. (Amst). 69, 382–391 (2017)

    CAS  Google Scholar 

  44. R.A. Rakkesh, S. Balakumar, Process. Appl. Ceram. 8, 7–13 (2014)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the National Center of Scientific and Technical Research (CNRST) and the staff of the UATRS Division, for use of their equipment and technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabab Bekkari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bekkari, R., Laânab, L. & Jaber, B. Effect of the bivalent dopant ionic radius, electronegativity and concentration on the physical properties of the sol–gel-derived ZnO thin films. J Mater Sci: Mater Electron 31, 15129–15139 (2020). https://doi.org/10.1007/s10854-020-04078-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04078-z

Navigation