Skip to main content
Log in

Designing of VCuS@MXene nanocomposite electrode for energy storage device and electrochemical glucose sensor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

MXene, a two-dimensional (2D) material composed of transition metal carbides (TMCs) and nitrides, have fascinated substantial scientific interest. This increased interest results from their exceptional properties, which include extraordinary conductivity, transparency, outstanding absorbing capacity, and significant charge storage capacities. In this work, the MXene-doped vanadium copper sulfide (VCuS) was synthesized through the hydrothermal method. In three electrode measurement system, the VCuS/MXene composite electrode showed exhibited a specific capacity (Qs) of 1620 Cg−1. As application point of view, the hybrid device is designed and measured the electrochemical properties. The hybrid device showed the remarkable Qs of 1528 C.g−1, power density (Pd) of 2347 Wkg−1 and an energy density (Ed) of 34.99 Whkg−1. Further, the VCuS/MXene//AC device is measured up to 6000 cycles to check the stability and durability. The device showed the capacity retention (CR) of 88.5% and a high Coulombic efficiency of 82.6%. Additionally, the VCuS/MXene electrode material is utilized as an electrochemical glucose sensor for the precise detection of H2O2 down to a minimal concentration of H2O2/mm, exhibiting exceptional precision. The use of multifunctional VCuS/MXene nanocomposite electrode material presents novel possibilities for the construction of hybrid energy harvesting systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data are available on request.

References

  1. X. Zhang et al., A novel aluminum–graphite dual-ion battery. Adv. Energy Mater. 6(11), 1502588 (2016)

    Article  Google Scholar 

  2. M. Wang et al., Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat. Chem. 10(6), 667–672 (2018)

    Article  CAS  PubMed  Google Scholar 

  3. S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature. 488(7411), 294–303 (2012)

    Article  CAS  PubMed  Google Scholar 

  4. S. Mu et al., Molecular grafting towards high-fraction active nanodots implanted in N-doped carbon for sodium dual-ion batteries. Natl. Sci. Rev. 8(7), nwaa178 (2021)

    CAS  PubMed  Google Scholar 

  5. Z. Huang et al., A sulfur-doped carbon-enhanced Na3V2 (PO4) 3 nanocomposite for sodium-ion storage. J. Phys. Chem. Solids. 167, 110746 (2022)

    Article  CAS  Google Scholar 

  6. Z. Huang et al., Constructing one-dimensional mesoporous carbon nanofibers loaded with NaTi2 (PO4) 3 nanodots as novel anodes for sodium energy storage. J. Phys. Chem. Solids. 161, 110479 (2022)

    Article  CAS  Google Scholar 

  7. B. Liu et al., Honeycomb carbon obtained from coal liquefaction residual asphaltene for high-performance supercapacitors in ionic and organic liquid-based electrolytes. J. Energy Storage. 68, 107826 (2023)

    Article  Google Scholar 

  8. L. Lu et al., Study on current discrepancy and redistribution of HTS non-insulation closed-loop coils during charging/discharging and subsequent transient process toward steady-state operation. Supercond. Sci. Technol. 35(9), 095001 (2022)

    Article  CAS  Google Scholar 

  9. Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45(21), 5925–5950 (2016)

    Article  CAS  PubMed  Google Scholar 

  10. M.S. Halper, J.C. Ellenbogen, Supercapacitors: A Brief Overview (The MITRE Corporation, McLean, Virginia, USA, 2006), p. 1

    Google Scholar 

  11. X. Zhao et al., The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale. 3(3), 839–855 (2011)

    Article  CAS  PubMed  Google Scholar 

  12. Y. Wu et al., Metastable structures with composition fluctuation in cuprate superconducting films grown by transient liquid-phase assisted ultra-fast heteroepitaxy. Mater. Today Nano. 24, 100429 (2023)

    Article  CAS  Google Scholar 

  13. Y. Zhao et al., Ternary Fe 3 O 4/reduced graphene oxide/phytic acid doped polyaniline hybrid based supercapacitive electrode with high capacitance retention and good cycling stability. New J. Chem. 47(19), 9143–9152 (2023)

    Article  CAS  Google Scholar 

  14. W. Liu et al., Metallic particles-induced surface reconstruction enabling highly durable zinc metal anode. Adv. Funct. Mater. 33(38), 2302661 (2023)

    Article  CAS  Google Scholar 

  15. Q. Li et al., Engineering an ultrathin and hydrophobic composite zinc anode with 24 µm thickness for high-performance Zn batteries. Adv. Funct. Mater. 33(40), 2303466 (2023)

    Article  CAS  Google Scholar 

  16. A. Dewan, R. Narayanan, M.O. Thotiyl, A multi-chromic supercapacitor of high coloration efficiency integrating a MOF-derived V 2 O 5 electrode. Nanoscale. 14(46), 17372–17384 (2022)

    Article  CAS  PubMed  Google Scholar 

  17. X. Zhao et al., Stabilized Ti3C2Tx-doped 3D vesicle polypyrrole coating for efficient protection toward copper in artificial seawater. Appl. Surf. Sci. 642, 158639 (2024)

    Article  CAS  Google Scholar 

  18. M. Jiang et al., Facile fabrication of laser induced versatile graphene-metal nanoparticles electrodes for the detection of hazardous molecules. Talanta. 257, 124368 (2023)

    Article  CAS  PubMed  Google Scholar 

  19. H. Yu et al., In situ construction of anode–molecule interface via lone-pair electrons in trace organic molecules additives to achieve stable zinc metal anodes. Adv. Energy Mater. 13(22), 2300550 (2023)

    Article  CAS  Google Scholar 

  20. J.-Y. Gao et al., Anisotropic medium sensing controlled by bound states in the continuum in polarization-independent metasurfaces. Opt. Express. 31(26), 44703–44719 (2023)

    Article  CAS  PubMed  Google Scholar 

  21. Y. Liu et al., Model Predictive Control-Based Dual-Mode Operation of an energy-stored Quasi-Z-Source Photovoltaic Power System. IEEE Trans. Industr. Electron. 70(9), 9169–9180 (2022)

    Article  Google Scholar 

  22. W. Zhang et al., Probing van der Waals magnetic surface and interface via circularly polarized X-rays. Appl. Phys. Rev. 10(4), 041308 (2023)

    Article  CAS  Google Scholar 

  23. Y. Lu et al., Mixed-mode operation of hybrid phase-change nanophotonic circuits. Nano Lett. 17(1), 150–155 (2017)

    Article  CAS  PubMed  Google Scholar 

  24. S. Fu et al., Conversion of dielectric surface effect into volume effect for high output energy. Adv. Mater. 35(40), 2302954 (2023)

    Article  CAS  Google Scholar 

  25. Y. Xie et al., Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J. Am. Chem. Soc. 136(17), 6385–6394 (2014)

    Article  CAS  PubMed  Google Scholar 

  26. M.R. Lukatskaya et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science. 341(6153), 1502–1505 (2013)

    Article  CAS  PubMed  Google Scholar 

  27. C. Eames, M.S. Islam, Ion intercalation into two-dimensional transition-metal carbides: global screening for new high-capacity battery materials. J. Am. Chem. Soc. 136(46), 16270–16276 (2014)

    Article  CAS  PubMed  Google Scholar 

  28. A.M. Patil et al., Bilateral growth of monoclinic WO3 and 2D Ti3C2Tx on 3D free-standing hollow graphene foam for all-solid-state supercapacitor. Chem. Eng. J. 421, 127883 (2021)

    Article  CAS  Google Scholar 

  29. T. Koriukina et al., On the use of Ti3C2 T x MXene as a negative Electrode Material for Lithium-Ion batteries. ACS Omega. 7(45), 41696–41710 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. S. Yang et al., Proportional optimization model of multiscale spherical BN for enhancing thermal conductivity. ACS Appl. Electron. Mater. 4(9), 4659–4667 (2022)

    Article  CAS  Google Scholar 

  31. Y. Zhang et al., Tuning the Red-to-green-upconversion luminescence intensity ratio of Na3ScF6: 20% Yb3+, 2% Er3 + particles by changes in size. Materials. 16(6), 2247 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. B. Zheng et al., Turbulent skin-friction drag reduction by annular dielectric barrier discharge plasma actuator. Phys. Fluids 35(12), 125129 (2023)

    Article  CAS  Google Scholar 

  33. Z.-Q. Lu et al., A dual-functional metamaterial for integrated vibration isolation and energy harvesting. J. Sound Vib. 509, 116251 (2021)

    Article  Google Scholar 

  34. S. Li et al., (2023) Differential Low-Temperature AC Breakdown between Synthetic Ester and Mineral Oils: Insights from both Molecular Dynamics and Quantum Mechanics. IEEE Transactions on Dielectrics and Electrical Insulation

  35. G. Cui et al., Synthesis and characterization of Eu (III) complexes of modified D-glucosamine and poly (N-isopropylacrylamide). Mater. Sci. Engineering: C 78, 603–608 (2017)

    Article  CAS  Google Scholar 

  36. I. Muhammad et al., Vacancy-engineered half-metallicity and magnetic anisotropy in CrSI semiconductor monolayer. J. Alloys Compd. 909, 164797 (2022)

    Article  CAS  Google Scholar 

  37. X. Cai et al., Lithium-mediated ammonia electrosynthesis with ether-based electrolytes. J. Am. Chem. Soc. 145(47), 25716–25725 (2023)

    Article  CAS  PubMed  Google Scholar 

  38. Y. Zhang et al., Enhanced energy storage performance of polyethersulfone-based dielectric composite via regulating heat treatment and filling phase. J. Alloys Compd. 960, 170539 (2023)

    Article  CAS  Google Scholar 

  39. G. Ma et al., In situ intercalative polymerization of pyrrole in graphene analogue of MoS2 as advanced electrode material in supercapacitor. J. Power Sources. 229, 72–78 (2013)

    Article  CAS  Google Scholar 

  40. X. Wang et al., High supercapacitor and adsorption behaviors of flower-like MoS 2 nanostructures. J. Mater. Chem. A 2(38), 15958–15963 (2014)

    Article  CAS  Google Scholar 

  41. K. Krishnamoorthy et al., Supercapacitive properties of hydrothermally synthesized sphere like MoS2 nanostructures. Mater. Res. Bull. 50, 499–502 (2013)

    Article  Google Scholar 

  42. B. Pandit, S.S. Karade, B.R. Sankapal, Hexagonal VS2 anchored MWCNTs: first approach to design flexible solid-state symmetric supercapacitor device. ACS Appl. Mater. Interface 9(51), 44880–44891 (2017)

    Article  CAS  Google Scholar 

  43. Z. Zhang et al., Free-standing NiCo2S4@VS2 nanoneedle array composite electrode for high performance asymmetric supercapacitor application. J. Alloys Compd. 771, 274–280 (2018)

    Article  Google Scholar 

  44. S. Niu et al., MXene-based electrode with enhanced pseudocapacitance and volumetric capacity for power-type and ultra-long life lithium storage. ACS nano. 12(4), 3928–3937 (2018)

    Article  CAS  PubMed  Google Scholar 

  45. S. Vijayakumar, S. Nagamuthu, G. Muralidharan, Supercapacitor studies on NiO nanoflakes synthesized through a microwave route. ACS Appl. Mater. Interfaces. 5(6), 2188–2196 (2013)

    Article  CAS  PubMed  Google Scholar 

  46. M. Magnuson, J. Halim, L.-Å. Näslund, Chemical bonding in carbide MXene nanosheets. J. Electron Spectrosc. Relat. Phenom. 224, 27–32 (2018)

    Article  CAS  Google Scholar 

  47. M.S. Nahian et al., Elucidating synergistic mechanisms of Adsorption and Electrocatalysis of polysulfides on double-transition metal MXenes for Na–S batteries. ACS Appl. Mater. Interfaces. 14(8), 10298–10307 (2022)

    Article  CAS  PubMed  Google Scholar 

  48. M.Z. Iqbal et al., Facile synthesis of strontium oxide/polyaniline/graphene composite for the high-performance supercapattery devices. J. Electroanal. Chem. 879, 114812 (2020)

    Article  CAS  Google Scholar 

  49. M.Z. Iqbal et al., Co-MOF/polyaniline-based electrode material for high performance supercapattery devices. Electrochim. Acta. 346, 136039 (2020)

    Article  CAS  Google Scholar 

  50. C. Lu et al., Illuminating the nanomaterials triggered signal amplification in electrochemiluminescence biosensors for food safety: mechanism and future perspectives. Coord. Chem. Rev. 501, 215571 (2024)

    Article  CAS  Google Scholar 

  51. J. Zhao et al., Tumor cell membrane-coated continuous electrochemical sensor for GLUT1 inhibitor screening. J. Pharm. Anal. 13(6), 673–682 (2023)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the Researchers Supporting Project Number (RSPD2023R551) King Saud University, Riyadh, Saudi Arabia.

Funding

This work was funded by the Researchers Supporting Project Number (RSPD2023R551) King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

NM, NA, MI and AMA worked on experiment, data collection, analysis, and interpretation of results. NM, NA, MI, AMA, MWI, NHA, SM, SM, and AMH performed the calculation and write the manuscript and helped during the calculation process and reviewed the manuscript.

Corresponding author

Correspondence to Amir Muhammad Afzal.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest. The submitted work should be original and should not have been published elsewhere in any form or language.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muzaffar, N., Anjam, N., Imran, M. et al. Designing of VCuS@MXene nanocomposite electrode for energy storage device and electrochemical glucose sensor. J Mater Sci: Mater Electron 35, 661 (2024). https://doi.org/10.1007/s10854-024-12385-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12385-y

Navigation