Skip to main content
Log in

Exploring the electrochemical performance of nickel-zinc ferrite nanoparticles for supercapacitor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this research, nickel-zinc (Ni0.5Zn0.5Fe2O4) nanoparticles of ferrite are tested to see whether they can function as electrodes in supercapacitors. The synthesized nanoparticles have been found to have a single-phase face-centered cubic structure, according to structural, morphological, and compositional analyses. The nanoparticles are confirmed to be in their typical structure since Fourier transform infrared examination shows that they contain no organic components. Analyses of the material's surface and magnetic properties suggest that it has superparamagnetic properties and a particular surface area of 42.26 m2 g−1, both of which are essential for improving energy storage efficiency. Reversible and steady redox behavior may be shown in cyclic voltammetry investigations as confirmed from the well-developed curve. Rapid charge–discharge response, potential plateaus, with overall stability indicate that these nanoparticles are well-suited for high-rate applications. The effect of the applied current density upon charge storage capacity is highlighted by a specific capacitance study showing an inverse connection between current density with capacitance. Analyzing the impedance and the Nyquist plot may provide light on the kinetics of charge transfer and the capacitive behavior. These results show that nickel-zinc ferrite nanoparticles may function well as supercapacitor electrodes. For the sake of designing and optimizing supercapacitors to satisfy future energy needs, this work adds to our knowledge of their electrochemical characteristics and energy storage capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The research data generated and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. J.K. White, The Truth About Energy: Our Fossil-Fuel Addiction and the Transition to Renewables (Cambridge University Press, Cambridge, 2024)

    Book  Google Scholar 

  2. D. Boruah, S.S. Chandel, Techno-economic feasibility analysis of a commercial grid-connected photovoltaic plant with battery energy storage-achieving a net zero energy system. J. Energy Storage 77, 109984 (2024)

    Article  Google Scholar 

  3. M. Reveles-Miranda, V. Ramirez-Rivera, D. Pacheco-Catalán, Hybrid energy storage: features, applications, and ancillary benefits. Renew. Sustain. Energy Rev. 192, 114196 (2024)

    Article  Google Scholar 

  4. X. Tian, F. Tao, Z. Fu, L. Zhu, H. Sun, S. Song, Optimizing fuel economy of fuel cell hybrid electric vehicle based on energy management strategy with integrated rapid thermal regulation. Eng. Appl. Artif. Intell. 132, 107880 (2024)

    Article  Google Scholar 

  5. Z. Batool, A. Rehman, M. Ahmad, M.W. Iqbal, S.M. Wabaidur, M.R. Siddiqui, J.T. Glass, Fabrication of (Ag, Zn, Co) based spinel ferrites as electrode materials for high energy density hybrid supercapacitors. J. Energy Storage 79, 110092 (2024)

    Article  Google Scholar 

  6. V.B. Pawade, P.H. Salame, B.A. Bhanvase, Multifunctional Nanostructured Metal Oxides for Energy Harvesting and Storage Devices (CRC Press, Boca Raton, 2020)

    Book  Google Scholar 

  7. O.A. AlKawak, J.R.R. Kumar, S.S. Daniel, C.V.K. Reddy, Hybrid method based energy management of electric vehicles using battery-super capacitor energy storage. J. Energy Storage 77, 109835 (2024)

    Article  Google Scholar 

  8. S. Alam, Q.Z. Khan, A. Gassoumi, M.I. Khan, M.Z. Iqbal, Z. Ahmad, Innovating synthesis approaches in advancing electrochemical efficiency: A journey into hydrothermal and sonochemical realms. J. Energy Storage 78, 109821 (2024)

    Article  Google Scholar 

  9. K.O. Abdulwahab, M.M. Khan, J.R. Jennings, Ferrites and ferrite-based composites for energy conversion and storage applications. Critic. Rev. Solid State Mater. Sci. (2023). https://doi.org/10.1080/10408436.2023.2272963

    Article  Google Scholar 

  10. P.P. GaunsDessai, Synthesis, Characterization and Study of Solid State Properties of Mn/Al Doped Nickel Zinc Ferrite and Their Applications, Goa University, 2020.

  11. H. Palani, A. Rastogi, Effect of annealing temperature on structural and electrochemical behaviour on MgFe2O4 as electrode material in neutral aqueous electrolyte for supercapacitors. Nanotechnology 35(17), 175401 (2024)

    Article  Google Scholar 

  12. R. Roshani, A. Tadjarodi, Synthesis of ZnFe2O4 nanoparticles with high specific surface area for high-performance supercapacitor. J. Mater. Sci. Mater. Electron. 31(24), 23025–23036 (2020)

    Article  CAS  Google Scholar 

  13. M. Mayakkannan, A. Murugan, A. Shameem, V. Siva, S. Sasikumar, S. Thangarasu, S.A. Bahadur, Investigations on ternary transition metal ferrite: NiCoFe2O4 as potential electrode for supercapacitor prepared by microwave irradiation method. J. Energy Storage 44, 103257 (2021)

    Article  Google Scholar 

  14. K.H. Kenari, A. Bahari, M.S. Lashkenari, Widely improved supercapacitance properties of zirconium–cobalt ferrite nanoparticles by N-doped graphene oxide as an electrode in supercapacitor. J. Energy Storage 74, 109274 (2023)

    Article  Google Scholar 

  15. S. Sivakumar, N.A. Mala, K.M. Batoo, E.H. Raslan, Efficient, highly stable Zn2+ doped NiO nanoparticles with enhanced magnetic and supercapacitor applications. Mater. Technol. 37(10), 1375–1387 (2022)

    Article  CAS  Google Scholar 

  16. N. Tiwari, S. Kadam, R. Ingole, S. Kulkarni, Facile hydrothermal synthesis of ZnFe2O4 nanostructures for high-performance supercapacitor application. Ceram. Int. 48(19), 29478–29483 (2022)

    Article  CAS  Google Scholar 

  17. A. Hossain, P. Yanda, V.A. Cherepanov, K. Sakthipandi, A. Sundaresan, Synthesis, structure, optical and magnetic properties of Nd1− xAxMn0. 5Co0. 5O3− δ (A= Ba, Sr and Ca; x= 0 and 0.25). Ceram. Int. 46(17), 26895–26902 (2020)

    Article  CAS  Google Scholar 

  18. K. Sakthipandi, N. Lenin, R.R. Kanna, A.S. Afroze, M. Sivabharathy, PVA-doped NiNdxFe2-xO4 nanoferrites: tuning of dielectric and magnetic properties. J. Magnet. Magnet. Mater. 485, 105–111 (2019)

    Article  CAS  Google Scholar 

  19. K. Sakthipandi, K. Kannagi, A. Hossain, Effect of lanthanum doping on the structural, electrical, and magnetic properties of Mn0. 5Cu0. 5LaxFe2− xO4 nanoferrites. Ceram. Int. 46(11), 19634–19638 (2020)

    Article  CAS  Google Scholar 

  20. A. Hossain, A.R. Gilev, P. Yanda, V.A. Cherepanov, A.S. Volegov, K. Sakthipandi, A. Sundaresan, Optical, magnetic and magneto-transport properties of Nd 1-xAxMn0. 5Fe0. 5O3-δ (A= Ca, Sr, Ba; x= 0, 0.25). J. Alloys Compd. 847, 156297 (2020)

    Article  CAS  Google Scholar 

  21. W.S. Mohamed, N.M.A. Hadia, M. Alzaid, A.M. Abu-Dief, Impact of Cu2+ cations substitution on structural, morphological, optical and magnetic properties of Co1-xCuxFe2O4 nanoparticles synthesized by a facile hydrothermal approach. Solid State Sci. 125, 106841 (2022)

    Article  CAS  Google Scholar 

  22. W.S. Mohamed, A.M. Abu-Dief, Impact of rare earth europium (RE-Eu3+) ions substitution on microstructural, optical and magnetic properties of CoFe2− xEuxO4 nanosystems. Ceram. Int. 46(10), 16196–16209 (2020)

    Article  CAS  Google Scholar 

  23. W.S. Mohamed, M. Alzaid, S.M.M. Abdelbaky, Z. Amghouz, S. García-Granda, M.A. Abu-Dief, Impact of Co2+ substitution on microstructure and magnetic properties of CoxZn1-xFe2O4 nanoparticles. Nanomaterials 9(11), 1602 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. A.M. Abu-Dief, M.S. Abdelbaky, D. Martínez-Blanco, Z. Amghouz, S. García-Granda, Effect of chromium substitution on the structural and magnetic properties of nanocrystalline zinc ferrite. Mater. Chem. Phys. 174, 164–171 (2016)

    Article  CAS  Google Scholar 

  25. E.M.M. Ibrahim, A.M. Abu-Dief, A. Elshafaie, A.M. Ahmed, Electrical, thermoelectrical and magnetic properties of approximately 20-nm Ni-Co-O nanoparticles and investigation of their conduction phenomena. Mater. Chem. Phys. 192, 41–47 (2017)

    Article  CAS  Google Scholar 

  26. E.M.M. Ibrahim, L.H. Abdel-Rahman, A.M. Abu-Dief, A. Elshafaie, S.K. Hamdan, A.M. Ahmed, Electric, thermoelectric and magnetic characterization of γ-Fe2O3 and Co3O4 nanoparticles synthesized by facile thermal decomposition of metal-Schiff base complexes. Mater. Res. Bullet. 99, 103–108 (2018)

    Article  CAS  Google Scholar 

  27. E.M.M. Ibrahim, L.H. Abdel-Rahman, A.M. Abu-Dief, A. Elshafaie, S.K. Hamdan, A.M. Ahmed, The synthesis of CuO and NiO nanoparticles by facile thermal decomposition of metal-Schiff base complexes and an examination of their electric, thermoelectric and magnetic properties. Mater. Res. Bullet. 107, 492–497 (2018)

    Article  CAS  Google Scholar 

  28. L.H. Abdel Rahman, A.M. Abu-Dief, R.M. El-Khatib, S.M. Abdel-Fatah, A.M. Adam, E.M.M. Ibrahim, Sonochemical synthesis, structural inspection and semiconductor behavior of three new nano sized Cu (II), Co (II) and Ni (II) chelates based on tri-dentate NOO imine ligand as precursors for metal oxides. Appl. Organometal. Chem. 32(3), e4174 (2018)

    Article  Google Scholar 

  29. A. Toghan, M. Khairy, E.M. Kamar, M.A. Mousa, Effect of particle size and morphological structure on the physical properties of NiFe2O4 for supercapacitor application. J. Mater. Res. Technol 19, 3521–3535 (2022)

    Article  CAS  Google Scholar 

  30. B.C.J. Mary, J.J. Vijaya, B. Saravanakumar, M. Bououdina, L.J. Kennedy, NiFe2O4 and 2D-rGO decorated with NiFe2O4 nanoparticles as highly efficient electrodes for supercapacitors. Synth. Metals 291, 117201 (2022)

    Article  Google Scholar 

  31. P.B. Kharat, S.B. Somvanshi, S.B. Somwanshi, A.M. Mopari, 2021 Investigation of Super‐Capacitive Properties of Nanocrystalline Copper‐Zinc (Cu0 5Zn0 5Fe2O4) Ferrite Nanoparticles, Macromolecular Symposia, Wiley, Hoboken, pp. 2100162.

  32. W. Chehade, H. Basma, A.M. Abdallah, R.S. Hassan, R. Awad, Synthesis and magneto-optical studies of novel Ni0. 5Zn0. 5Fe2O4/Zn0. 95Co0. 05O nanocomposite as a candidate for photocatalytic applications. Ceram. Int. 48(1), 1238–1255 (2022)

    Article  CAS  Google Scholar 

  33. V. Harish, M.M. Ansari, D. Tewari, A.B. Yadav, N. Sharma, S. Bawarig, M.L. García-Betancourt, A. Karatutlu, M. Bechelany, A. Barhoum, Cutting-edge advances in tailoring size, shape, and functionality of nanoparticles and nanostructures: a review. J. Taiwan Inst. Chem. Eng. 149, 105010 (2023)

    Article  CAS  Google Scholar 

  34. W.M. Shume, E. Zereffa, C.R. Ravikumar, S.P. Fakrudeen, K.Y. Chan, H.A. Murthy, Lanthanum substituted Ni-Zn ferrite (Ni0. 75Zn0. 25Fe2O4) nanomaterial and its composite with rGO for degradation of binary dyes under visible light irradiation. Mater. Res. Exp. 10(5), 055005 (2023)

    Article  Google Scholar 

  35. M. Alahmadi, W.H. Alsaedi, W.S. Mohamed, H.M. Hassan, M. Ezzeldien, A.M. Abu-Dief, Development of Bi2O3/MoSe2 mixed nanostructures for photocatalytic degradation of methylene blue dye. J. Taibah Univ. Sci. 17(1), 2161333 (2023)

    Article  Google Scholar 

  36. T.A. Wani, G. Suresh, R. Masrour, K.M. Batoo, A. Rasool, A structural, morphological, optical and magnetic study of nickel-substituted zinc (Ni–Zn) ferrite nanoparticles synthesized via glycine assisted gel autocombustion synthesis route. Mater. Chem. Phys. 307, 128169 (2023)

    Article  CAS  Google Scholar 

  37. J. Massoudi, M. Smari, K. Nouri, E. Dhahri, K. Khirouni, S. Bertaina, L. Bessais, Magnetic and spectroscopic properties of Ni–Zn–Al ferrite spinel: from the nanoscale to microscale. RSC Adv. 10(57), 34556–34580 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. B. Gayathri Manju, P. Raji, Green synthesis, characterization, and antibacterial activity of lime-juice-mediated copper–nickel mixed ferrite nanoparticles. Appl. Phys. A 126(3), 156 (2020)

    Article  CAS  Google Scholar 

  39. S. Mukhopadhyay, A.R. Kottaichamy, M.C. Devendrachari, R.M. Mendhe, H.M.N. Kotresh, C.P. Vinod, M.O. Thotiyl, Electrochemical energy storage in an organic supercapacitor via a non-electrochemical proton charge assembly. Chem. Sci. 15(5), 1726–1735 (2024)

    Article  CAS  PubMed  Google Scholar 

  40. Q. Wang, X. Hou, S. Liu, Y. Wang, S. Gu, G. Zhou, J. Chai, Rambutan-like Ni0. 5Zn0. 5Fe2O4 nanospheres with tunable N-doped carbon shell as anode materials for high performance lithium-ion batteries. J. Alloys Compd. 978, 173529 (2024)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Author Dr. Prashant B. Kharat acknowledges the assistance and characterization facilities of Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar (Formerly known as Aurangabad), Kavayitri Bahinabai Chaudhari North Maharashtra University in Jalgaon, as well as the Tata Institute of Fundamental Research in Mumbai. I'm grateful for the financial assistance from Sant Gadge Baba Amravati University's Research Project File No. SGBAU/7-D/DPP-RGSTC-23/2022 under the Rajiv Gandhi Science & Technology Commission's university system.

Author information

Authors and Affiliations

Authors

Contributions

PBK: conceived and designed the research study, performed the experiments, analyzed the data, and wrote the manuscript. SBS: contributed to the supervision, experimental design, data analysis, and manuscript preparation. EAD, AMM and NHB: assisted in data collection, interpretation, and critical revision of the manuscript.

Corresponding authors

Correspondence to Prashant B. Kharat or Sandeep B. Somvanshi.

Ethics declarations

Conflict of interest

The authors declare no competing interests regarding the publication of this research manuscript.

Ethical approval

This research study was conducted in compliance with ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharat, P.B., Somvanshi, S.B., Dawi, E.A. et al. Exploring the electrochemical performance of nickel-zinc ferrite nanoparticles for supercapacitor applications. J Mater Sci: Mater Electron 35, 606 (2024). https://doi.org/10.1007/s10854-024-12360-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12360-7

Navigation