Skip to main content
Log in

Enhanced photoluminescence in (Ca, Zn)TiO3: Pr3+ afterglow phosphor for anti-counterfeiting application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Afterglow luminescent materials display an unusual phenomenon of delayed emission, primarily due to electron or hole traps. A lot of pioneering work on green and blue emitting afterglow luminescent materials have been reported, however, a handful of lattices are known to exhibit red emission. Red-emanating afterglow luminescent materials are desirable for tactical defence applications due to their lower sensitivity, particularly in dark conditions. A series of red-emanating CaTiO3: Pr3+ phosphor materials were prepared and the role of Zn ions in escalating the photoluminescence (PL) properties was studied. Detailed characterization of the as-synthesized phosphors revealed orthorhombic structure and contraction in unit cell volume was observed upon zinc incorporation. Broad excitation spectrum and sharp peak at 618 nm (red emission) due to transition from 1D2 - 3H4 were observed at room temperature. Ca(0.9),Zn(0.1)TiO3: 0.25 mol% Pr3+ phosphor was found to emit enhanced PL intensity with an afterglow duration of 12 min. At 373 K, the optimized phosphor retained 76% of its initial emission intensity which indicates excellent thermal stability. The development of luminescent security ink followed by deposition onto various substrates was also discussed. The aqueous stability of the deposited patterns was tested on a time scale of more than 10 days. Security ink can be used for anti-counterfeiting applications such as safeguarding important documents and consumable-driven goods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data that support the findings of this study are included in the article.

References

  1. L. Yang, S. Gai, H. Ding, D. Yang, L. Feng, P. Yang, Recent progress in inorganic afterglow materials: mechanisms, persistent luminescent properties, modulating methods, and bioimaging applications. Adv. Opt. Mater. 11(11), 2202382 (2023). https://doi.org/10.1002/ADOM.202202382

    Article  CAS  Google Scholar 

  2. J. Wang et al., Multi-modal anti-counterfeiting and encryption enabled through silicon-based materials featuring pH-responsive fluorescence and room-temperature phosphorescence. Nano Res. 13(6), 1614–1619 (2020). https://doi.org/10.1007/S12274-020-2781-1/METRICS

    Article  CAS  Google Scholar 

  3. J. Xu, S. Tanabe, Persistent luminescence instead of phosphorescence: History, mechanism, and perspective. J. Lumin. 205, 581–620 (2019). https://doi.org/10.1016/J.JLUMIN.2018.09.047

    Article  CAS  Google Scholar 

  4. M.S. Abdelrahman, H. Ahmed, T.A. Khattab, Optical and luminescent properties of Lanthanide-Doped Strontium aluminates. Progress Opt. Sci. Photonics. 25, 333–354 (2023). https://doi.org/10.1007/978-981-99-4145-2_13/COVER

    Article  Google Scholar 

  5. J. Kong, A. Meijerink, Identification and Quantification of Charge Transfer in CaAl2O4:Eu2+,Nd3 + Persistent Phosphor. Adv. Opt. Mater. 11, 2203004 (2023). https://doi.org/10.1002/ADOM.202203004

    Article  CAS  Google Scholar 

  6. D. Poelman, N. Avci, P.F. Smet, Measured luminance and visual appearance of multi-color persistent phosphors. Opt. Express 17(1), 358 (2009). https://doi.org/10.1364/OE.17.000358

    Article  CAS  PubMed  Google Scholar 

  7. M. Lastusaari et al., Wavelength-sensitive energy storage in Sr3MgSi2O8:Eu2+,Dy3+. J. Therm. Anal. Calorim. 121(1), 29–35 (2015). https://doi.org/10.1007/S10973-015-4571-7

    Article  CAS  Google Scholar 

  8. Y. Wang, H. Guo, Research Advances on Human-Eye-Sensitive Long Persistent Luminescence Materials. Front. Chem. 9, 654347 (2021). https://doi.org/10.3389/FCHEM.2021.654347/BIBTEX

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. X. Wang, Y. Mao, Recent advances in Pr3+-activated persistent phosphors. J. Mater. Chem. C Mater. 10(10), 3626–3646 (2022). https://doi.org/10.1039/D2TC00208F

    Article  CAS  Google Scholar 

  10. K. Lu et al., Effects of praseodymium doping on the electrical properties and aging effect of InZnO thin-film transistor. J. Mater. Sci. 54(24), 14778–14786 (2019). https://doi.org/10.1007/S10853-019-03941-7/METRICS

    Article  CAS  Google Scholar 

  11. E.G. Hilario et al., Red emitting CaTiO3: Pr3 + nanophosphors for rapid identification of high contrast latent fingerprints. Nanotechnology 31(36), 364007 (2020). https://doi.org/10.1088/1361-6528/AB93EE

    Article  Google Scholar 

  12. B. Wang et al., Design, Preparation, and Characterization of a Novel Red Long-Persistent Perovskite Phosphor: Ca3Ti2O7:Pr3+. Inorg. Chem. 54(23), 11299–11306 (2015). https://doi.org/10.1021/ACS.INORGCHEM.5B01894/SUPPL_FILE/IC5B01894_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  13. E. Pinel, P. Boutinaud, R. Mahiou, What makes the luminescence of Pr3 + different in CaTiO3 and CaZrO3 ? J. Alloys Compd. 380, 1–2 (2004). https://doi.org/10.1016/J.JALLCOM.2004.03.048

    Article  Google Scholar 

  14. B. Kahouadji, L. Guerbous, D.J. Jovanović, M.D. Dramićanin, Temperature dependence of red emission in YPO4:Pr3 + nanopowders. J. Lumin. 241, 118499 (2022). https://doi.org/10.1016/J.JLUMIN.2021.118499

    Article  CAS  Google Scholar 

  15. D.V. Sunitha et al., CdSiO3:Pr3+ nanophosphor: Synthesis, characterization and thermoluminescence studies. Spectrochim Acta A Mol Biomol Spectrosc 99, 279–287 (2012). https://doi.org/10.1016/J.SAA.2012.08.057

    Article  CAS  PubMed  Google Scholar 

  16. S. Liu et al., Photoluminescence and afterglow behavior of orange-reddish Pr3+-activated Sr3Al2O6 phosphor. J. Solid State Chem. 294, 121861 (2021). https://doi.org/10.1016/J.JSSC.2020.121861

    Article  CAS  Google Scholar 

  17. M. Ju et al., Insights into the Microstructures and Energy Levels of Pr3+-Doped YAlO3Scintillating Crystals. Inorg. Chem. 60(7), 5107–5113 (2021). https://doi.org/10.1021/ACS.INORGCHEM.1C00021/

    Article  CAS  Google Scholar 

  18. X. Yang et al., Low-temperature red long-persistent luminescence of Pr3+ doped NaNbO3 with a perovskite structure. J. Lumin. 208, 290–295 (2019). https://doi.org/10.1016/J.JLUMIN.2018.12.066

    Article  CAS  Google Scholar 

  19. Y. Jin, Y. Hu, L. Chen, X. Wang, G. Ju, Luminescent properties of a red afterglow phosphor Ca2SnO4:Pr3+. Opt. Mater. 35(7), 1378–1384 (2013). https://doi.org/10.1016/J.OPTMAT.2013.02.008

    Article  CAS  Google Scholar 

  20. P. Yang et al., Tailoring lanthanide doping in perovskite CaTiO3 for luminescence applications. Phys. Chem. Chem. Phys. 19(24), 16189–16197 (2017). https://doi.org/10.1039/C7CP01953J

    Article  CAS  PubMed  Google Scholar 

  21. Q. Kuang, X. Hou, C. Du, X. Wang, D. Gao, Recent advances in the anti-counterfeiting applications of long persistent phosphors. Phys. Chem. Chem. Phys. 25(27), 17759–17768 (2023). https://doi.org/10.1039/D3CP01818K

    Article  CAS  PubMed  Google Scholar 

  22. A. Zhu, J. Wang, Y. Du, D. Zhao, Q. Gao, Effects of Zn impurities on the electronic properties of Pr doped CaTiO3. Phys. B Condens. Matter 407(5), 849–854 (2012). https://doi.org/10.1016/J.PHYSB.2011.12.096

    Article  CAS  Google Scholar 

  23. R. Chen, Y. Gao, Y. Gao, Synthesis and luminescence properties of CaTiO3:Pr3+, Ni2 + red phosphor. Solid State Sci. 89, 161–166 (2019). https://doi.org/10.1016/J.SOLIDSTATESCIENCES.2019.01.006

    Article  CAS  Google Scholar 

  24. G. Swati et al., Novel flux-assisted synthesis for enhanced afterglow properties of (Ca,Zn)TiO3:Pr3+ phosphor. J. Alloys Compd. 698, 930–937 (2017). https://doi.org/10.1016/J.JALLCOM.2016.12.316

    Article  CAS  Google Scholar 

  25. B.N. Swathi et al., Designing vivid green Sr9Al6O18:Er3 + phosphor for information encryption and nUV excitable cool-white LED applications. J. Lumin. 257, 119618 (2023). https://doi.org/10.1016/J.JLUMIN.2022.119618

    Article  CAS  Google Scholar 

  26. V. Butticè, F. Caviggioli, C. Franzoni, G. Scellato, P. Stryszowski, N. Thumm, Counterfeiting in digital technologies: An empirical analysis of the economic performance and innovative activities of affected companies. Res. Policy 49(5), 103959 (2020). https://doi.org/10.1016/J.RESPOL.2020.103959

    Article  Google Scholar 

  27. W. Ren, G. Lin, C. Clarke, J. Zhou, D. Jin, Optical Nanomaterials and Enabling Technologies for High-Security-Level Anticounterfeiting. Adv. Mater. 32, 1901430 (2020). https://doi.org/10.1002/ADMA.201901430

    Article  CAS  Google Scholar 

  28. E. Moretti et al., Luminescent Eu-doped GdVO4 nanocrystals as optical markers for anti-counterfeiting purposes. Chem. Pap. 71(1), 149–159 (2017). https://doi.org/10.1007/S11696-016-0081-8/METRICS

    Article  CAS  Google Scholar 

  29. M.R. Carro-Temboury, R. Arppe, T. Vosch, T.J. Sørensen, An optical authentication system based on imaging of excitation-selected lanthanide luminescence. Sci. Adv. (2018). https://doi.org/10.1126/SCIADV.1701384

    Article  PubMed  PubMed Central  Google Scholar 

  30. J. Andres, R.D. Hersch, J.E. Moser, A.S. Chauvin, A New Anti-Counterfeiting Feature Relying on Invisible Luminescent Full Color Images Printed with Lanthanide-Based Inks. Adv. Funct. Mater. 24(32), 5029–5036 (2014). https://doi.org/10.1002/ADFM.201400298

    Article  CAS  Google Scholar 

  31. S. Vaidyanathan, Recent progress on lanthanide-based long persistent phosphors: an overview. J. Mater. Chem. C Mater. 11(26), 8649–8687 (2023). https://doi.org/10.1039/D2TC05243A

    Article  CAS  Google Scholar 

  32. P. Singh, R.S. Yadav, S.B. Rai, Enhanced photoluminescence in a Eu3 + doped CaTiO3 perovskite phosphor via incorporation of alkali ions for white LEDs. J. Phys. Chem. Solids 151, 109916 (2021). https://doi.org/10.1016/J.JPCS.2020.109916

    Article  CAS  Google Scholar 

  33. U. Mizutani, H. Sato, T.B. Massalski, The original concepts of the Hume-Rothery rule extended to alloys and compounds whose bonding is metallic, ionic, or covalent, or a changing mixture of these. Prog Mater Sci 120, 100719 (2021). https://doi.org/10.1016/J.PMATSCI.2020.100719

    Article  CAS  Google Scholar 

  34. J. Goethals, A. Bedidi, C. Fourdrin, M. Tarrida, S. Rossano, Experimental study of trivalent rare-earth element incorporation in CaTiO3 perovskite: evidence for a new substitution mechanism. Phys. Chem. Miner. 46(10), 1003–1015 (2019). https://doi.org/10.1007/S00269-019-01058-6/METRICS

    Article  CAS  Google Scholar 

  35. Q. Dong, C. Huang, X. Huang, L. He, Multicolor luminescence from CaZnOS: Bi3+, Eu3 + for stress sensing and multimode anti-counterfeiting. J. Alloys Compd. 967, 171687 (2023). https://doi.org/10.1016/J.JALLCOM.2023.171687

    Article  CAS  Google Scholar 

  36. Y.C. Lin, M. Bettinelli, S.K. Sharma, B. Redlich, A. Speghini, M. Karlsson, Unraveling the impact of different thermal quenching routes on the luminescence efficiency of the Y3Al5O12:Ce3+ phosphor for white light emitting diodes. J. Mater. Chem. C Mater. 8(40), 14015–14027 (2020). https://doi.org/10.1039/D0TC03821K

    Article  CAS  Google Scholar 

  37. Red Luminescence in, Pr3+-Doped Calcium Titanates - Diallo – 1997 - physica status solidi (a) - Wiley Online Library. Accessed: Sep. 18, 2023. [Online]. Available: https://onlinelibrary.wiley.com/doi/epdf/10.1002/1521-396X%28199703%29160%3A1%3C255%3A%3AAID-PSSA255%3E3.0.CO%3B2-Y

  38. S. thapa, G. Adhikari, H. Zhu, A. Grigoriev, Zhu, Zn-Alloyed All-inorganic Halide perovskite-Based White Light-emitting Diodes with Superior color Quality. Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-55228-1

    Article  PubMed  PubMed Central  Google Scholar 

  39. A. Kumar et al., Improvement in upconversion/downshifting luminescence of Gd2O3:Ho3+/Yb3 + phosphor through Ca2+ / Zn2 + incorporation and optical thermometry studies. Mater. Res. Bull. 112, 28–37 (2019). https://doi.org/10.1016/J.MATERRESBULL.2018.11.031

    Article  CAS  Google Scholar 

  40. J. Zhang, Y. Fan, Z. Chen, J. Wang, P. Zhao, B. Hao, Enhancing the photoluminescence intensity of CaTiO3:Eu3 + red phosphors with magnesium. J. Rare Earths 33(10), 1036–1039 (2015). https://doi.org/10.1016/S1002-0721(14)60523-8

    Article  CAS  Google Scholar 

  41. Y. Inaguma et al., Temperature dependence of luminescence properties of praseodymium-doped perovskite CaTiO3:Pr3+. Thermochim Acta 532, 168–171 (2012). https://doi.org/10.1016/J.TCA.2011.02.036

    Article  CAS  Google Scholar 

  42. Z. Barandiarán, M. Bettinelli, L. Seijo, Color control of Pr3+ luminescence by electron-hole recombination energy transfer in CaTiO3 and CaZrO3. J. Phys. Chem. Lett. 8(13), 3095–3100 (2017). https://doi.org/10.1021/ACS.JPCLETT.7B01158/SUPPL_FILE/JZ7B01158_SI_001.PDF

    Article  PubMed  Google Scholar 

  43. S.M. Chung et al., The effects of zinc on the characteristics of (Zn,Ca)TiO3:Pr3+ phosphors. J. Cryst. Growth 326(1), 94–97 (2011). https://doi.org/10.1016/J.JCRYSGRO.2011.01.060

    Article  CAS  Google Scholar 

  44. G. Jyothi, L.S. Kumari, K.G. Gopchandran, Site selective substitution and its influence on photoluminescence properties of Sr0.8Li0.2Ti0.8Nb0.2O3:Eu3 + phosphors. RSC Adv. 7(45), 28438–28451 (2017). https://doi.org/10.1039/C7RA03598E

    Article  CAS  Google Scholar 

  45. M.F. García-Mendoza et al., CaTiO3 perovskite synthetized by chemical route at low temperatures for application as a photocatalyst for the degradation of methylene blue. J. Mater. Sci. 34(10), 1–11 (2023). https://doi.org/10.1007/S10854-023-10309-W/METRICS

    Article  Google Scholar 

  46. H.W. Eng, P.W. Barnes, B.M. Auer, P.M. Woodward, Investigations of the electronic structure of d0 transition metal oxides belonging to the perovskite family. J. Solid State Chem. 175(1), 94–109 (2003). https://doi.org/10.1016/S0022-4596(03)00289-5

    Article  CAS  Google Scholar 

  47. H. Cheng, Y. Feng, Y. Fu, Y. Zheng, Y. Shao, Y. Bai, Understanding and minimizing non-radiative recombination losses in perovskite light-emitting diodes. J. Mater. Chem. C Mater. 10(37), 13590–13610 (2022). https://doi.org/10.1039/D2TC01869A

    Article  CAS  Google Scholar 

  48. R. Dangi et al., Effect of oxygen vacancy on the crystallinity and optical band gap in tin oxide thin film. Energies 16(6), 2653 (2023). https://doi.org/10.3390/EN16062653

    Article  CAS  Google Scholar 

  49. S. Sasidharan, G. Jyothi, K.G. Gopchandran, Solution combustion synthesis and luminescence dynamics of CaTiO3: Eu3+, Y3 + nanophosphors. J. Lumin. (2021). https://doi.org/10.1016/j.jlumin.2021.118048

    Article  Google Scholar 

  50. X. Liu et al., Effect of ZnO on structure and luminescence properties of Ce3+-Yb3 + co-doped Na2O–CaO–SiO2–Al2O3 glasses for solar panel applications. Opt. Mater. 142, 113996 (2023). https://doi.org/10.1016/J.OPTMAT.2023.113996

    Article  CAS  Google Scholar 

  51. P. Singh, H. Mishra, P.C. Pandey, S.B. Rai, Structure, photoluminescence properties, and energy transfer phenomenon in Sm3+/Eu3+ co-doped CaTiO3 phosphors. New J. Chem. 47(3), 1460–1471 (2023). https://doi.org/10.1039/D2NJ05774C

    Article  CAS  Google Scholar 

  52. S. Sasidharan, G. Jyothi, S. Sameera, K.G. Gopchandran, Perovskite titanates at the nanoscale: Tunable luminescence by energy transfer and enhanced emission with Li + co-doping. J. Solid State Chem. (2020). https://doi.org/10.1016/j.jssc.2020.121449

    Article  Google Scholar 

  53. H. Takahashi, M. Hagiwara, S. Fujihara, Redox-induced dual optical switching of CaTiO3:Pr3+ phosphor nanoparticles synthesized by sol–gel method. J Solgel Sci Technol 104(3), 694–701 (2022). https://doi.org/10.1007/S10971-022-05791-3/METRICS

    Article  CAS  Google Scholar 

  54. P. Boutinaud, L. Sarakha, E. Cavalli, M. Bettinelli, P. Dorenbos, R. Mahiou, About red afterglow in Pr3 + doped titanate perovskites. J. Phys. D Appl. Phys. 42(4), 045106 (2009). https://doi.org/10.1088/0022-3727/42/4/045106

    Article  CAS  Google Scholar 

  55. W. Jia, D. Jia, T. Rodriguez, D.R. Evans, R.S. Meltzer, W.M. Yen, UV excitation and trapping centers in CaTiO3:Pr3+. J. Lumin. 119–120, 13–18 (2006). https://doi.org/10.1016/J.JLUMIN.2005.12.067

    Article  Google Scholar 

  56. P. Wang, X. Xu, D. Zhou, X. Yu, J. Qiu, Sunlight activated long-lasting luminescence from Ba5Si8O21: Eu2+,Dy3 + phosphor. Inorg. Chem. 54(4), 1690–1697 (2015). https://doi.org/10.1021/IC5026312/ASSET/

    Article  CAS  PubMed  Google Scholar 

  57. S. Jana, A. Mondal, J. Manam, S. Das, Pr3 + doped BaNb2O6 reddish orange emitting phosphor for solid state lighting and optical thermometry applications. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2019.153342

    Article  Google Scholar 

  58. D. Haranath et al., Rare-earth free yellow-green emitting NaZnPO4:Mn phosphor for lighting applications. Appl. Phys. Lett. (2012). https://doi.org/10.1063/1.4768214/128674

    Article  Google Scholar 

  59. G. Swati, D. Bidwai, D. Haranath, Red emitting CaTiO3: Pr3+ nanophosphors for rapid identification of high contrast latent fingerprints. Nanotechnology (2020) iopscience.iop.org, Accessed: Sep. 05, 2023. [Online]. Available: https://iopscience.iop.org/article/10.1088/1361-6528/ab93ee/meta

  60. P.J. Dereń, R. Pazik, W. Strek, P. Boutinaud, R. Mahiou, Synthesis and spectroscopic properties of CaTiO3 nanocrystals doped with Pr3 + ions. J Alloys Compd 451(1–2), 595–599 (2008). https://doi.org/10.1016/J.JALLCOM.2007.04.197

    Article  Google Scholar 

  61. S. Li, X. Liang, Preparation and luminescent properties of CaTiO 3: Pr 3+, Al 3 + persistent phosphors by nitrate-citric acid combustion method. J. Mater. Sci.: Mater. Electron. 19(12), 1147–1152 (2008). https://doi.org/10.1007/S10854-007-9502-3/FIGURES/7

    Article  CAS  Google Scholar 

  62. J. Mu, J. Liu, L. Gao, Upconversion fluorescence modulation of CaTiO3: Yb3+/Er3 + nanocubes via Zn2 + introduction. Optoelectron. Lett. 18(3), 129–134 (2022). https://doi.org/10.1007/S11801-022-1125-7/METRICS

    Article  Google Scholar 

  63. G. Kim, S.J. Lee, Y.J. Kim, The effects of zinc on the structural and luminescent properties of Ca1 – xZnxTiO3:Pr3 + phosphors. Opt. Mater. 34(11), 1860–1864 (2012). https://doi.org/10.1016/J.OPTMAT.2012.05.012

    Article  CAS  Google Scholar 

  64. D. Bidwai, Y.R. Parauha, M.K. Sahu, S.J. Dhoble, M. Jayasimhadri, G. Swati, Synthesis and luminescence characterization of aqueous stable Sr3MgSi2O8: Eu2+, Dy3 + long afterglow nanophosphor for low light illumination. J. Solid State Chem. 310, 123089 (2022). https://doi.org/10.1016/J.JSSC.2022.123089

    Article  CAS  Google Scholar 

  65. G.V. Kanmani, V. Ponnusamy, G. Rajkumar, S.M.M. Kennedy, A new Eu3+-activated milarite-type potassium magnesium zinc silicate red-emitting phosphor for forensic applications. J. Mater. Sci.: Mater. Electron. 34(8), 1–25 (2023). https://doi.org/10.1007/S10854-023-10087-5/TABLES/9

    Article  Google Scholar 

  66. A.M. Achari, V. Perumalsamy, G. Swati, A. Khare, SrAl2O4:Eu2+,Dy3+ Long Afterglow Phosphor and Its Flexible Film for Optomechanical Sensing Application. ACS Omega 8(48), 45483–45494 (2023). https://doi.org/10.1021/ACSOMEGA.3C05222/SUPPL_FILE/AO3C05222_SI_001.PDF

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

We acknowledge DST SERB for providing financial support under the scheme SRG project fellowship (Sanction order no. SRG/2021/001109) to carry out this work.

Author information

Authors and Affiliations

Authors

Contributions

PV: Conceptualization, Methodology, Investigation, Data curation, Writing–original draft. GS: Conceptualization, Supervision, Writing–review & editing, Project administration.

Corresponding author

Correspondence to G. Swati.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 551.0 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanishree, P., Swati, G. Enhanced photoluminescence in (Ca, Zn)TiO3: Pr3+ afterglow phosphor for anti-counterfeiting application. J Mater Sci: Mater Electron 35, 597 (2024). https://doi.org/10.1007/s10854-024-12350-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12350-9

Navigation