Skip to main content
Log in

Effect of gamma rays on magnetic and linear/nonlinear optical properties of pristine and modified nickel ferrite nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, pure and surfactant-added nickel ferrite nanoparticles are successfully synthesized using the co-precipitation method. The prepared samples are investigated before and after irradiation of gamma ray and compared. The linear and nonlinear optical responses, morphological, magnetic, and structural properties are examined using the photoluminescence, ultraviolet–visible spectroscopy, z-scan technique, field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), vibrating-sample magnetometer (VSM), and Raman spectroscopy analysis. The XRD analyses of the samples showed their crystallinity with no significant change after gamma irradiation. The grain sizes of the irradiated and surfactant-added nickel ferrites are decreased. According to the FE-SEM images, the synthesized particles are spherical. Based on the VSM results, the nanoparticles displayed superparamagnetic properties. However, after gamma irradiation and adding the surfactant, the magnetic saturation is reduced. The band gap of unmodified samples is measured in the range of 2.05–3.92 eV before and after gamma irradiation. Moreover, the band gap of the nickel ferrite samples modified with cetyltrimethylammonium bromide-tartaric acid is in the range of 2.07–3.84 eV. The closed- and open-aperture z-scans are used to measure the nonlinear refractive index and absorption coefficient, respectively. Based on analysis and data, our synthesized nanoparticles can be a good candidate for various applications such as hyperthermia, catalysis, and optical switches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. R.D.K. Misra, S. Gubbala, A. Kale, W.F. Egelhoff Jr., A comparison of the magnetic characteristics of nanocrystalline nickel, zinc, and manganese ferrites synthesized by reverse micelle technique. Mater. Sci. Eng. B 111, 164–174 (2004)

    Article  Google Scholar 

  2. B.E. Kashevsky, V.E. Agabekov, S.B. Kashevsky, K.A. Kekalo, E.Y. Manina, I.V. Prokhorov, V.S. Ulashchik, Study of cobalt ferrite nanosuspensions for low-frequency ferromagnetic hyperthermia. Particuology. 6, 322–333 (2008)

    Article  CAS  Google Scholar 

  3. S.P. Gubin, Magnetic nanoparticles (Wiley, Weinheim, 2009)

    Book  Google Scholar 

  4. V. Sepelak, M. Menzel, I. Bergmann, M. Wiebcke, F. Krumeich, K.D. Becker, Structural and magnetic properties of nanosize mechanosynthesized nickel ferrite. J. Magn. Magn. Mat. 272–276, 1616–1618 (2004)

    Article  Google Scholar 

  5. R. Malik, S. Annapoorni, S. Lamba, V. Raghavendra Reddy, A. Gupta, P. Sharma, A. Inoue, Mössbauer and magnetic studies in nickel ferrite nanoparticles: effect of size distribution. J. Magn. Magn. Mater. 322, 3742–3747 (2010)

    Article  CAS  Google Scholar 

  6. T.F. Marinca, I. Chicinas, O. Isnard, V. Pop, F. Popa, Synthesis, structural and magnetic characterization of nanocrystalline nickel ferrite—NiFe2O4 obtained by reactive milling. J. Alloys Compd. 509, 7931–7936 (2011)

    Article  CAS  Google Scholar 

  7. N. Sanvicens, M.P. Marco, Multifunctional nanoparticles properties and prospects for their use in human medicine. Trends Biotechnol. 26, 425–433 (2008)

    Article  CAS  PubMed  Google Scholar 

  8. S. Bhattacharyya, R.A. Kudgus, R. Bhattacharya, P. Mukherjee, Inorganic nanoparticles in cancer therapy. Pharm Res. 28, 237–259 (2011)

    Article  CAS  PubMed  Google Scholar 

  9. H.C. Huang, S. Barua, G. Sharma, S.K. Dey, K. Rege, Inorganic nanoparticles for cancer imaging and therapy. J. Control Release. 155, 344–357 (2011)

    Article  CAS  PubMed  Google Scholar 

  10. A.P. Guimarães, Principles of nanomagnetism (Springer, Berlin, 2010)

    Google Scholar 

  11. G. Podaru, V. Chikan, in Magnetism in nanomaterials: applications in catalysis and life sciences. ed. by S.H. Bossmann, H. Wang (The Royal Society of Chemistry, London, 2017), pp.1–24

    Google Scholar 

  12. M. Kalubowilage, K. Janik, S.H. Bossmann, Magnetic nanomaterials for magnetically-aided drug delivery and hyperthermia. Appl. Sci. 9, 2927 (2019)

    Article  CAS  Google Scholar 

  13. K. Cheng, S. Hsu, A Facile method to prepare superparamagnetic iron oxide and hydrophobic drug-encapsulated biodegradable polyurethane nanoparticles. Int J Nanomedicine 12, 1775–1789 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sh. Liu, B. Yu, S. Wang, Y. Shen, H. Cong, Preparation, surface functionalization and application of Fe3O4 magnetic nanoparticles. Adv. Colloid Interface Sci. 281, 102165 (2020)

    Article  CAS  PubMed  Google Scholar 

  15. S. Laurent, D. Forge, M.A. Roch, C. Robic, L.V. Elst, R.N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108, 2064–2110 (2008)

    Article  CAS  PubMed  Google Scholar 

  16. K.M. Abhirami, R. Sathyamoorthy, K. Asokan, Structural, optical and electrical properties of gamma irradiated SnO thin films. Radiat. Phys. Chem. 91, 35–39 (2013)

    Article  CAS  Google Scholar 

  17. A. Manjunath, T. Deepa, N.K. Supreetha, M. Irfan, Studies on AC electrical conductivity and dielectric properties of PVA/NH4NO3 solid polymer electrolyte films. Adv. Mater. Phys. Chem. 5, 295–301 (2015)

    Article  CAS  Google Scholar 

  18. R.W. Boyd, Nonlinear optics, 3rd edn. (Academic press, Cambridge, 2020)

    Google Scholar 

  19. A.U. Habeeba, M. Saravanan, T.C.S. Girisun, S. Anandan, Nonlinear optical studies of conjugated organic dyes for optical limiting applications. J. Mole. Struc. 1240, 130559 (2021)

    Article  CAS  Google Scholar 

  20. Z. Chai, X. Hu, F. Wang, X. Niu, Ultrafast all-optical switching. Adv. Opt. Mater. 5(7), 1600665 (2017)

    Article  Google Scholar 

  21. J. Wu, Z. Li, J. Luo, A.K.-Y. Jen, High-performance organic second-and third-order nonlinear optical materials for ultrafast information processing. J. Mater. Chem. C. 8(43), 15009–15026 (2020)

    Article  CAS  Google Scholar 

  22. J.W. You, S.R. Bongu, Q. Baom, N.C. Panoiu, Nonlinear optical properties and applications of 2D materials: theoretical and experimental aspects. Nanophotonics 8(1), 63–97 (2019)

    Article  Google Scholar 

  23. S. Kalunge, A.V. Humbe, M.V. Khedkar, S.D. More, A.P. Keche, A.A. Pandit, Investigation on synthesis, structural and electrical properties of zinc ferrite on gamma irradiation. J. Phys: Conf. Ser. 1644(1), 012017 (2020)

    CAS  Google Scholar 

  24. H. Al-Ghamdi, A.H. Almuqrin, H. Kassim, Effect of gamma irradiation on the structural, optical, electrical, and ferroelectric characterizations of bismuth-modified barium titanate ceramics. Materials 15(12), 4337 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. M. Hjiri, N.H. Alonizan, M.M. Althubayti, S. Alshammari, H. Besbes, M.S. Aida, Preparation and photoluminescence of NiFe2O4 nanoparticles. J. Mater. Sci: Mater. Elec. 31, 859–860 (2020)

    CAS  Google Scholar 

  26. S.K. Abdel-Aal, A.S. Abdel-Rahman, Graphene influence on the structure, magnetic, and optical properties of rare-earth perovskite. J. Nanoparticle Res. 22(9), 267 (2020)

    Article  CAS  Google Scholar 

  27. R.M. Chellab, K.H. Harbbi, The correction of the line profiles for x-ray diffraction peaks by using three analysis methods. AIP Conf. Proc. 2123, 020044 (2019)

    Article  Google Scholar 

  28. S.K. Abdel-Aal, A.S. Abdel-Rahman, W.M. Gamal, M. Abdel-Kader, H.S. Ayoub, A.F. El-Sherif, M.F. Kandeel, S. Bozhko, E.E. Yakimov, E.B. Yakimov, Crystal structure, vibrational spectroscopy and optical properties of a one-dimensional organic–inorganic hybrid perovskite of [NH3CH2CH (NH3) CH2] BiCl5. Acta Crystallogr. B: Struct. Sci. Cryst. Eng. Mater. 75(5), 880–886 (2019)

    Article  CAS  PubMed  Google Scholar 

  29. A. Ahlawat, V.G. Sathe, Raman study of NiFe2O4 nanoparticles, bulk and films: effect of laser power. J. Raman Spectrosc. 42(5), 1087–1094 (2011)

    Article  CAS  Google Scholar 

  30. K.A. Kumar, R.N. Bhowmik, Micro-structural characterization and magnetic study of Ni1.5Fe1.5O4 ferrite synthesized through coprecipitation route at different pH values. Mater. Chem. Phys. 146(12), 159–169 (2014)

    Article  Google Scholar 

  31. Y.S. Rammah, A.S. Abouhaswa, A.H. Salama, R. El-Mallawany, Optical, magnetic characterization, and gamma-ray interactions for borate glasses using XCOM program. J. Theor. Appl. Phys. 13, 155–164 (2019)

    Article  Google Scholar 

  32. O. Agar, H.O. Tekin, M.I. Sayyed, M.E. Korkmaz, O. Culfa, C. Ertugay, Experimental investigation of photon attenuation behaviors for concretes including natural perlite mineral. Res. Phys. 12, 237–243 (2019)

    Google Scholar 

  33. B.P. Rao, K.H. Rao, P.S.V. Subba Rao, A. Mahesh Kumar, Y.L.N. Murthy, K. Asokan, V.V. Siva Kumar, R. Kumar, N.S. Gajbhiye, O.F. Caltun, Swift heavy ions irradiation studies on some ferrite nanoparticles. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 244(1), 27–30 (2006)

    Article  CAS  Google Scholar 

  34. N.Y. Novini, K. Jamshidi-Galeh, S.R. Shojaei, T. Tohidi, Ş Uyaver, Synthesis and investigation of toxicity and photothermal effect of NiFe2O4@Cu core-shell nanoparticles. Phys. B: Conden. Matter. 666, 415114 (2023)

    Article  Google Scholar 

  35. A. Karim, S.E. Shirsath, S.J. Shukla, K.M. Jadhav, Gamma irradiation induced damage creation on the cation distribution, structural and magnetic properties in Ni-Zn ferrite. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 268, 2706–2711 (2010)

    Article  CAS  Google Scholar 

  36. R.S. Yadav, I. Kuřitka, J. Vilcakova, J. Havlica, J. Masilko, L. Kalina, J. Tkacz, J. Švec, V. Enev, M. Hajdúchová, Impact of grain size and structural changes on magnetic, dielectric, electrical, impedance and modulus spectroscopic characteristics of CoFe2O4 nanoparticles synthesized by honey mediated sol-gel combustion method. Adv. Nat. Sci. Nanosci. Nanotechnol. 8, 045002 (2017)

    Article  Google Scholar 

  37. M.S. Hossain, S.M. Hoque, S.I. Liba, S. Choudhury, Effect of synthesis methods and a comparative study of structural and magnetic properties of zinc ferrite. AIP Adv. 7, 10532 (2017)

    Article  Google Scholar 

  38. S.K. Sen, M.M.H. Babu, T.C. Paul, M.S. Hossain, M. Hossain, S. Dutta, M.R. Hasan, M.N. Hossain, M.A. Matin, M.A. Hakim, P. Bala, Gamma irradiated nanostructured NiFe2O4: effect of γ-photon on morphological, structural, optical and magnetic properties. AIP Adv. 11, 075308 (2021)

    Article  CAS  Google Scholar 

  39. E. Filippo, G. Micocci, A. Tepore, T. Siciliano, Fabrication of α-TeO2 smooth and beaded microwires by thermal evaporation method. J. Cryst. Growth 336(1), 101–105 (2011)

    Article  CAS  Google Scholar 

  40. Y.H. Elbashar, A.E. Omran, S.M. Hussien, M.A. Mohamed, R.A. Ibrahem, W.A. Rashidy, A.S. Abdel Rahaman, H.H. Hassan, Molecular and spectroscopic analysis of zinc oxide doped sodium phosphate glass. NLOQO. 52(3–4), 337–347 (2020)

    CAS  Google Scholar 

  41. S.W. Xue, X.T. Zu, W.L. Zhou, H.X. Deng, X. Xiang, H. Deng, Effects of post-thermal annealing on the optical constants of ZnO thin film. J. Alloys Compd. 448, 21–26 (2008)

    Article  CAS  Google Scholar 

  42. S. Joshi, M. Kumar, S. Chhoker, G. Srivastava, M. Jewariya, V.N. Singh, Structural, magnetic, dielectric and optical properties of nickel ferrite nanoparticles synthesized by co-precipitation method. J. Mol. Struct. 1076, 55–62 (2014)

    Article  CAS  Google Scholar 

  43. D. Zhang, X. Pu, K. Du, Y.M. Yu, J.J. Shim, P. Cai, S.I. Kim, H.J. Seo, Combustion synthesis of magnetic Ag/NiFe2O4 composites with enhanced visible-light photocatalytic properties. Sep. Purif. Technol. 137, 82–85 (2006)

    Article  Google Scholar 

  44. K.M. Garadkar, L.A. Ghule, V.N. Bhoraskar, S.D. Dhole, K.B. Sapnar, (2011) Effects of 6 MeV electron irradiation on ZnO nanoparticles synthesized by microwave method. Proc Part Accel Conf New York 2166–2168.

  45. A.R. Chavan, R.R. Chilwar, P.B. Kharat, K.M. Jadhav, Effect of annealing temperature on structural, morphological, optical and magnetic properties of NiFe2O4 thin films. J. Supercond. Nov. Magn. 31(9), 2949–2958 (2018)

    Article  CAS  Google Scholar 

  46. M. Zulqarnain, S.S. Ali, U. Hira, J.F. Feng, M.I. Khan, M. Rizwan, K. Javed, Gh. Farid, M.S. Hasan, Superparamagnetic contributions, optical band gap tuning and dominant interfacial resistive mechanisms in ferrites nanostructures. J. Alloys Compd. 894, 162431 (2022)

    Article  CAS  Google Scholar 

  47. Y.H. Elbashar, S.M. Hussien, J.A. Khaliel, D.I. Moubarak, A.S. Abdel-Rahaman, H.H. Hassan, Optical spectroscopic analysis of sodium zinc phosphate glass doped cadmium oxide used for laser window protection. Phys. AUC. 28, 57–72 (2018)

    Google Scholar 

  48. A. Bagade, P. Nagwade, A. Nagawade, S. Thopate, V. Pandit, S. Pund, Impact of Mg2+ substitution on structural, magnetic and optical properties of Cu-Cd ferrites. Mater. Today: Proc. 53, 144–152 (2022)

    CAS  Google Scholar 

  49. A.H. AL-Hammadi, S.H. Khoreem, Investigations on optical and electrical conductivity of Ba/Ni/Zn/Fe16O27 ferrite nanoparticles. Biointerface Res. Appl. Chem. 13(2), 168 (2023)

    CAS  Google Scholar 

  50. A. Agrawal, J.Y. Park, P. Sen, G.C. Yi, Unraveling absorptive and refractive optical nonlinearities in CVD grown graphene layers transferred onto a foreign quartz substrate. Appl. Surf. Sci. 505, 144392 (2020)

    Article  CAS  Google Scholar 

  51. A. Fatemi, M. Rasouli, M. Ghoranneviss, D. Dorranian, Chemical bath synthesis of Ag2S, CuS, and CdS nanoparticle-polymer nanocomposites: structural, linear, and nonlinear optical characteristics. Opt. Mater. Ex. 12(7), 2697–2710 (2022)

    Article  CAS  Google Scholar 

  52. Z. Dehghani, M. Parishani, M. Nadafan, J.Z. Anvari, Third-order nonlinear optical properties of NiFe2O4 nanoparticles by Z-scan technique. Optik 144, 672–678 (2017)

    Article  Google Scholar 

  53. S. Yuvaraj, N. Manikandan, G. Vinitha, Effect of Zn2+ ions on third order nonlinear optical behavior and power limiting properties of manganese ferrite nanoparticles. Photon. Nanostruc. Fundam. Appl. 45, 100922 (2021)

    Article  Google Scholar 

  54. T.S. Nirmala, N. Iyandurai, S. Yuvaraj, M. Sundararajan, Third order nonlinear optical behavior and optical limiting properties of Ni2+ ions doped zinc nano-aluminates. Opt. Mater. 124, 111950 (2022)

    Article  CAS  Google Scholar 

  55. P. Surendran, A. Lakshmanan, S.S. Pariya, K. Balakrishnan, Investigations on solid-state parameters of third-order nonlinear optical Ni1−xZnxFe2O4 nanoparticles synthesized by microwave-assisted combustion method. Appl. Phys. A. 126(4), 257 (2020)

    Article  CAS  Google Scholar 

  56. Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Romano, J. Xu, Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices. Adv. Mater. 32(3), 1806452 (2020)

    Article  CAS  Google Scholar 

  57. T. Kong, Y. Luo, W. Wang, H. Kong, Z. Fan, H. Liu, Enhanced ultraviolet damage resistance in magnesium doped lithium niobate crystals through zirconium co-doping. Materials 14(4), 1017 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. BCh. Reddy, H.C. Manjunatha, Y.S. Vidya, K.N. Sridhar, U.M. Pasha, L. Seenappa, C. Mahendrakumar, B. Sadashivamurthy, N. Dhananjaya, B.M. Sankarshan, S. Krishnaveni, K.V. Sathish, P.S.D. Gupta, Synthesis and characterization of multi-functional nickel ferrite nano-particles for X-ray/gamma radiation shielding, display and antimicrobial applications. J. Phys. Chem. Solids 159, 110260 (2021)

    Article  CAS  Google Scholar 

  59. R. Saranya, R.A. Raj, M.S. AlSalhi, S. Devanesan, Dependence of catalytic activity of nanocrystalline nickel ferrite on its structural, morphological, optical, and magnetic properties in aerobic oxidation of benzyl alcohol. J. Supercond. Nov. Magn. 31(4), 1219–1225 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Not applicable

Funding

This project is supported by Sahand University of Technology with contract number 23681.

Author information

Authors and Affiliations

Authors

Contributions

All authors designed the project; N. Yousefpour Novini, T. Tohidi, and K. Jamshidi-Galeh did the experimental design and also carried out measurements; all authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to S. H. Reza Shojaei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

The authors declare the consent to participate.

Consent for publication

The authors declare the consent for publication

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novini, N.Y., Jamshidi-Galeh, K., Shojaei, S.H.R. et al. Effect of gamma rays on magnetic and linear/nonlinear optical properties of pristine and modified nickel ferrite nanoparticles. J Mater Sci: Mater Electron 35, 601 (2024). https://doi.org/10.1007/s10854-024-12341-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12341-w

Navigation