Skip to main content
Log in

Study of Ge-doped garnet type Li7La3Zr2O12 as solid electrolyte for Li-ion battery application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The series Li7−4xGexLa3Zr2O12 has been synthesized using conventional solid-state reaction method by substituting Germanium (Ge) at the Li site with the varying content of Ge (x) from 0.05 to 0.20. The conducting cubic phase is confirmed using XRD analysis. The surface morphology and elemental distribution have been studied with the help of SEM characterization. The densities of the samples were calculated. For the confirmation of functional groups present, IR spectroscopy has been studied. The modulus and ac conductivity studies have also been examined. A complex impedance study has been carried out in the frequency range 20 Hz to 20 MHz .The highest ionic conductivity has been observed for 0.10 Ge. The minimum activation energy of 0.56 eV is associated with the highest conductivity value of 7.23 × 10−6 S/cm at room temperature. The increment in ionic conductivity by one order at room temperature makes 0.10 Ge containing ceramic sample a promising candidate as a solid electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Manuscript has no associated data.

References

  1. E.J. Cussen, J. Mater. Chem. 20, 5167 (2010)

    Article  CAS  Google Scholar 

  2. C. Sun, J. Liu, Y. Gong, D.P. Wilkinson, J. Zhang, Nano Energy. 33, 363 (2017)

    Article  CAS  Google Scholar 

  3. J.M. Tarascon, M. Armand, Nature. 414, 359 (2001)

    Article  CAS  PubMed  Google Scholar 

  4. V. Thangadurai, S. Narayanan, D. Pinzaru, Chem. Soc. Rev. 43, 4714 (2014)

    Article  CAS  PubMed  Google Scholar 

  5. V. Thangadurai, S. Adams, W. Weppner, Chem. Mater. 12, 2998 (2004)

    Article  Google Scholar 

  6. L. Van Wüllen, T. Echelmeyer, H.W. Meyer, D. Wilmer, Phys. Chem. Chem. Phys. 9, 3298 (2007)

    Article  PubMed  Google Scholar 

  7. R.H. Shin, S.I. Son, Y.S. Han, Y. Do Kim, H.T. Kim, S.S. Ryu, W. Pan, Solid State Ionics. 301, 10 (2017)

    Article  CAS  Google Scholar 

  8. W. Zhang, J. Nie, F. Li, Z.L. Wang, C. Sun, Nano Energy. 45, 413 (2018)

    Article  CAS  Google Scholar 

  9. Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, R. Kanno, Nat. Energy. 1, 1 (2016)

    Article  Google Scholar 

  10. W. Greatbatch, J.H. Lee, W. Mathias, M. Eldridge, J.R. Moser, A.A. Schneider, IEEE Trans. Biomed. Eng. BME. –18, 317 (1971)

    Article  Google Scholar 

  11. B.B. Owens, J. Power Sources. 90, 2 (2000)

    Article  CAS  Google Scholar 

  12. A.V. Deshpande, V.K. Deshpande, Solid State Ionics. 154–155, 433 (2002)

    Article  Google Scholar 

  13. J.T.S. Irvine, A.R. West, J. Solid State Chem. 69, 126 (1987)

    Article  CAS  Google Scholar 

  14. E.I. Burmakin, B.D. Antonov, G.S. Shekhtman, Inorg. Mater. 46, 540 (2010)

    Article  CAS  Google Scholar 

  15. J. Wang, C.W. Sun, Y.D. Gong, H.R. Zhang, J.A. Alonso, M.T. Fernández-Diaz, Z.L. Wang, J.B. Goodenough, Chin. Phys. B 27, 0 (2018)

    Google Scholar 

  16. M. Aote, A.V. Deshpande, Ceram. Int. 49, 40011 (2023)

    Article  CAS  Google Scholar 

  17. R. Murugan, V. Thangadurai, W. Weppner, Angew. Chem. Int. Ed. 46, 7778 (2007)

    Article  CAS  Google Scholar 

  18. Y.T. Chen, A. Jena, W.K. Pang, V.K. Peterson, H.S. Sheu, H. Chang, R.S. Liu, J. Phys. Chem. C 121, 15565 (2017)

    Article  CAS  Google Scholar 

  19. Y. Tian, Y. Zhou, W. Wang, Y. Zhou, Ceram. Int. 48, 963 (2022)

    Article  CAS  Google Scholar 

  20. D. Rettenwander, C.A. Geiger, G. Amthauer, ChemInform 44, no (2013) Inorg. Chem. 2014, 53(12) 6264–6269 https://doi.org/10.1021/ic500803h

  21. S. Aktaş, O.M. Özkendir, Y.R. Eker, Ş. Ateş, Ü. Atav, G. Çelik, W. Klysubun, J. Alloys Compd. 792, 279 (2019)

    Article  Google Scholar 

  22. Y. Zhang, J. Deng, D. Hu, F. Chen, Q. Shen, L. Zhang, S. Dong, Electrochim. Acta. 296, 823 (2019)

    Article  CAS  Google Scholar 

  23. D.K. Schwanz, A. Villa, M. Balasubramanian, B. Helfrecht, E.E. Marinero, AIP Adv. (2020). https://doi.org/10.1063/1.5141764

    Article  Google Scholar 

  24. M. Aote, A.V. Deshpande, J. Phys. Chem. Solids. 190, 111980 (2024)

  25. S. Hu, Y.F. Li, R. Yang, Z. Yang, L. Wang, Ceram. Int. 44, 6614 (2018)

    Article  CAS  Google Scholar 

  26. M. Huang, W. Xu, Y. Shen, Y.H. Lin, C.W. Nan, Electrochim. Acta. 115, 581 (2014)

    Article  CAS  Google Scholar 

  27. H. Geng, K. Chen, D. Yi, A. Mei, M. Huang, Y. Lin, C. Nan, Xiyou Jinshu Cailiao Yu Gongcheng/Rare. Met. Mater. Eng. 45, 612 (2016)

    Article  CAS  Google Scholar 

  28. R.H. Brugge, J.A. Kilner, A. Aguadero, Solid State Ionics. 337, 154 (2019)

    Article  CAS  Google Scholar 

  29. X. Zhan, S. Lai, M.P. Gobet, S.G. Greenbaum, M. Shirpour, Phys. Chem. Chem. Phys. 20, 1447 (2018)

    Article  CAS  PubMed  Google Scholar 

  30. P. Scherrer, Nachr. Ges. Wiss. Göttingen. 2698 (1918)

  31. J.I. Langford, A.J.C. Wilson, J. Appl. Cryst. 11102 (1978)

  32. V. Uvarov, I. Popov, Mater. Charact. 85, 111 (2013)

    Article  CAS  Google Scholar 

  33. M.M. Islam, T. Bredow, J. Phys. Chem. Lett. 6, 4622 (2015)

    Article  CAS  PubMed  Google Scholar 

  34. E. Rangasamy, J. Wolfenstine, J. Sakamoto, Solid State Ionics. 206, 28 (2012)

    Article  CAS  Google Scholar 

  35. C. Liu, K. Rui, C. Shen, M.E. Badding, G. Zhang, Z. Wen, J. Power Sources. 282, 286 (2015)

    Article  CAS  Google Scholar 

  36. V. Gajraj, A. Kumar, S. Indris, H. Ehrenberg, N. Kumar, C.R. Mariappan, Ceram. Int. 48, 29238 (2022)

    Article  CAS  Google Scholar 

  37. S. Dahiya, R. Punia, S. Murugavel, A.S. Maan, Solid State Sci. 55, 98 (2016)

    Article  CAS  Google Scholar 

  38. P. Wakudkar, A.V. Deshpande, J. Phys. Chem. Solids. 155, 110092 (2021)

    Article  CAS  Google Scholar 

  39. P. Wakudkar, A.V. Deshpande, Solid State Ionics. 345, 115185 (2020)

    Article  CAS  Google Scholar 

  40. G.R. Gajula, L.R. Buddiga, N. Vattikunta, Mater. Chem. Phys. 230, 331 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors would like to express sincere appreciation to VNIT, Nagpur, for providing a Ph.D. fellowship. The author appreciate the support of DST FIST project number SR/FST/PSI/2017/5(C) for the XRD facility provided by the Department of Physics at VNIT, Nagpur.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MA: Material preparation, data analysis, writing original draft, conceptualization, editing, proof reading. AD: Editing, supervising, conceptualization.

Corresponding author

Correspondence to A. V. Deshpande.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aote, M., Deshpande, A.V. Study of Ge-doped garnet type Li7La3Zr2O12 as solid electrolyte for Li-ion battery application. J Mater Sci: Mater Electron 35, 586 (2024). https://doi.org/10.1007/s10854-024-12338-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12338-5

Navigation