Skip to main content
Log in

Construction and XRD analysis of La@Co3O4@g-C3N4 nanostructures for removal of Co ions from contaminated water

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The current study used La-Co3O4@g-C3N4 nanostructures (LCoCN) produced by ultrasonic-and sol-gel processes to remove Co (II) ions from aqueous solutions. The successful development of the composite was verified by XRD which revealed both nitride and metal oxides phases. The EDX and XPS study confirmed its elemental composition from the blended precursors. LCoCN nanostructures demonstrated a minute pore volume of 0.72 cm3.g−1 and a specific surface area of 33.677 m2/g. In addition, at a pH of 5.0, LCoCN demonstrated exceptional adsorption efficacy for Co (II). The Langmuir isotherm equilibrium was observed during the adsorption of Co (II), and it is estimated that the theoretical maximal adsorption capacity of Co (II) is 573.6 mg/g. The high precision with which the pseudo-first-order model describes the kinetic constant for Co ion adsorption onto LCoCN nanostructures is highlighted by its excellent fit to the experimental data. Thus, assessment of the adsorption potential of LCoCN in this work presented its satisfactory inherent potential with great adsorption aptitude to eliminate cobalt ions from aqueous solution demonstrating its practical applicability as an adsorbent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

This report encompasses all the facts and information that have been documented or analyzed during this study.

References

  1. A. Modwi et al., Ba2 + removal from aquatic medium via TiY2O5@ g-C3N4 nanocomposites. Diam. Relat. Mater. 135, 109830 (2023)

    Article  CAS  Google Scholar 

  2. M. Güçoğlu, N. Şatıroğlu, Adsorption of pb (II), Cu (II), cd (II), ni (II), and Co (II) ions by newly synthesized 2-(2′-Hydroxyphenyl) benzothiazole-functionalized silica. J. Mol. Liq. 348, 118388 (2022)

    Article  Google Scholar 

  3. M. Ismail et al., High poisonous cd ions removal by Ru-ZnO-g-C3N4 nanocomposite: description and adsorption mechanism. Inorganics. 11(4), 176 (2023)

    Article  CAS  Google Scholar 

  4. A. Modwi et al., Stripping of Cu Ion from aquatic media by means of MgY2O4@ g-C3N4 nanomaterials. Water. 15(6), 1188 (2023)

    Article  CAS  Google Scholar 

  5. S. Das et al., Thiadiazole containing N-and S-rich highly ordered periodic mesoporous organosilica for efficient removal of hg (II) from polluted water. Chem. Commun. 56(28), 3963–3966 (2020)

    Article  CAS  Google Scholar 

  6. D. Kim et al., Colorimetric detection and removal of radioactive Co ions using sodium alginate-based composite beads. J. Hazard. Mater. 326, 69–76 (2017)

    Article  CAS  PubMed  Google Scholar 

  7. L.T. Teixeira et al., Sulfated and carboxylated nanocellulose for co + 2 adsorption. J. Mater. Res. Technol. 15, 434–447 (2021)

    Article  CAS  Google Scholar 

  8. N.Y. Elamin, W. Abd El-Fattah, A. Modwi, In Situ Fabrication of Green CoFe2O4 loaded on g-C3N4 nanosheets for Cu (II) decontamination. Inorg. Chem. Commun. (2023). https://doi.org/10.1016/j.inoche.2023.111184

    Article  Google Scholar 

  9. S. Rahali et al., Application of mesoporous CaO@ g-C3N4 nanosorbent materials for high-efficiency removal of pb (II) from aqueous solution. J. Mol. Liq. 379, 121594 (2023)

    Article  CAS  Google Scholar 

  10. A. Modwi, Exfoliated g-C3N4 as efficient sorbent for pb ions removal from synthetic wastewaters. Z. für Naturforschung A 78(5), 429–441 (2023)

    Article  CAS  Google Scholar 

  11. D.G. Barceloux, D. Barceloux, Cobalt J. Toxicology: Clin. Toxicol. 37(2), 201–216 (1999)

    CAS  Google Scholar 

  12. J.H. Bieleman (2002) Progress in the Development of cobalt-free Drier Systems. In Macromolecular Symposia, Wiley, NJ

  13. S. Roberts, G. Gunn, 6. Cobalt Critical Metals Handbook, 1988: p. 122

  14. B. Ghiban et al., (2014) Cobalt based alloys for dental applications. in Key Engineering Materials.  Trans Tech Publication

  15. J.P. Mercier, G. Zambelli, W. Kurz (2012) Introduction to Materials Science, Elsevier

  16. D. Joksimovic et al., Trace metal concentrations in Mediterranean blue mussel and surface sediments and evaluation of the mussels quality and possible risks of high human consumption. Food Chem. 127(2), 632–637 (2011)

    Article  CAS  PubMed  Google Scholar 

  17. R.K. Ibrahim et al., Environmental application of nanotechnology: air, soil, and water. Environ. Sci. Pollut. Res. 23, 13754–13788 (2016)

    Article  CAS  Google Scholar 

  18. I.M. Abdelmonem et al., Adsorption of 60 co from aqueous solution onto alginate–acrylic acid–vinylsulfonic acid/multiwalled carbon nanotubes composite. Polym. Bull. 77, 4631–4653 (2020)

    Article  CAS  Google Scholar 

  19. J.-C.G. Bünzli, Lanthanide coordination chemistry: from old concepts to coordination polymers. J. Coord. Chem. 67(23–24), 3706–3733 (2014)

    Article  Google Scholar 

  20. J.A. Jr Cotruvo, The chemistry of lanthanides in biology: recent discoveries, emerging principles, and technological applications. ACS Cent. Sci. 5(9), 1496–1506 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. X. Yang et al., Unsupported lanthanide–transition metal bonds: ionic vs Polar Covalent? Inorg. Chem. 60(13), 9394–9401 (2021)

    Article  CAS  PubMed  Google Scholar 

  22. M.V. Butovskii et al., Lanthanoid–transition-metal bonding in Bismetallocenes. Chemistry–A Eur. J. 20(10), 2804–2811 (2014)

    Article  CAS  Google Scholar 

  23. R.C. Ngullie et al., Synthesis and characterization of efficient ZnO/g-C3N4 nanocomposites photocatalyst for photocatalytic degradation of methylene blue. Coatings. 10(5), 500 (2020)

    Article  CAS  Google Scholar 

  24. A. Priya et al., A study of photocatalytic and photoelectrochemical activity of as-synthesized WO3/g-C3N4 composite photocatalysts for AO7 degradation. Mater. Sci. Energy Technol. 3, 43–50 (2020)

    CAS  Google Scholar 

  25. R. Bhargava et al., (2018) Investigation of structural, optical and electrical properties of Co3O4 nanoparticles. in AIP conference proceedings. AIP Publishing

  26. Z. Li et al., Amorphization of lacoo3 perovskite nanostructures for efficient oxygen evolution. ACS Appl. Nano Mater. 5(10), 14209–14215 (2022)

    Article  CAS  Google Scholar 

  27. H. Savaloni, R. Savari, Nano-structural variations of ZnO: N thin films as a function of deposition angle and annealing conditions: XRD, AFM, FESEM and EDS analyses. Mater. Chem. Phys. 214, 402–420 (2018)

    Article  CAS  Google Scholar 

  28. F. Fina et al., Structural investigation of graphitic carbon nitride via XRD and neutron diffraction. Chem. Mater. 27(7), 2612–2618 (2015)

    Article  CAS  Google Scholar 

  29. W.Y. Jung et al., Catalytic oxidation of benzene over LaCoO3 perovskite-type oxides prepared using microwave process. J. Nanosci. Nanotechnol. 15(1), 652–655 (2015)

    Article  CAS  PubMed  Google Scholar 

  30. C.J. Benedict et al., A systematic study on the effect of electron beam irradiation on structural, electrical, thermo-electric power and magnetic property of LaCoO3. J. Magn. Magn. Mater. 397, 145–151 (2016)

    Article  CAS  Google Scholar 

  31. B.M. Faroldi, J.F. Múnera, L.M. Cornaglia, In situ characterization of phase transformation and reactivity of high surface area lanthanum-based Ru catalysts for the combined reforming of methane. Appl. Catal. B 150, 126–137 (2014)

    Article  Google Scholar 

  32. S. Khoshsima et al., (2018) Impact of B2O3 and La2O3 addition on structural, mechanical and biological properties of hydroxyapatite

  33. D. Tsoutsou et al., Infrared spectroscopy and X-ray diffraction studies on the crystallographic evolution of La2O3 films upon annealing. Microelectron. Eng. 85(12), 2411–2413 (2008)

    Article  CAS  Google Scholar 

  34. S.K. Sen et al., X-ray peak profile analysis of pure and Dy-doped α-MoO3 nanobelts using Debye-Scherrer, Williamson-Hall and Halder-Wagner methods. Adv. Nat. Sci. NanoSci. NanoTechnol. 11(2), 025004 (2020)

    Article  CAS  Google Scholar 

  35. N.B.H. Mohamed et al., Impact of the stacking fault and surface defects states of colloidal CdSe nanocrystals on the removal of reactive black 5. Mater. Sci. Engineering: B 265, 115029 (2021)

    Article  Google Scholar 

  36. P.A. Arasu, R.V. Williams, The dielectric studies on sol–gel routed molybdenum oxide thin film. J. Adv. Dielectr. 7(02), 1750011 (2017)

    Article  CAS  Google Scholar 

  37. M. Basak et al., The use of X-ray diffraction peak profile analysis to determine the structural parameters of cobalt ferrite nanoparticles using Debye-Scherrer, Williamson-Hall, Halder-Wagner and size-strain plot: different precipitating agent approach. J. Alloys Compd. 895, 162694 (2022)

    Article  CAS  Google Scholar 

  38. M.T. Khorshid, S.J. Jahromi, M. Moshksar, Mechanical properties of tri-modal Al matrix composites reinforced by nano-and submicron-sized Al2O3 particulates developed by wet attrition milling and hot extrusion. Mater. Design. 31(8), 3880–3884 (2010)

    Article  CAS  Google Scholar 

  39. H.M. Moghaddam, S. Nasirian, Dependence of activation energy and lattice strain on TiO 2 nanoparticles? Nanosci. Methods. 1(1), 201–212 (2012)

    Article  Google Scholar 

  40. B. Li, Q. Sun, X. Zhang, Lattice correspondence analysis on the formation mechanism for partial stacking faults in hexagonal close-packed metals. Comput. Mater. Sci. 198, 110684 (2021)

    Article  CAS  Google Scholar 

  41. D. Nandi et al., Metal/metal oxide decorated graphene synthesis and application as supercapacitor: a review. J. Mater. Sci. 55, 6375–6400 (2020)

    Article  CAS  Google Scholar 

  42. E.N. Kalali et al., Effect of metal-based nanoparticles decorated graphene hybrids on flammability of epoxy nanocomposites. Compos. Part A: Appl. Sci. Manufac. 129, 105694 (2020)

    Article  CAS  Google Scholar 

  43. M.C. Mendoza-Ramirez, H.G. Silva-Pereyra, M. Avalos-Borja, Hexagonal phase into au plate-like particles: a precession electron diffraction study. Mater. Charact. 164, 110313 (2020)

    Article  CAS  Google Scholar 

  44. S. Mathur (2018) Growth and atomic structure of a novel crystalline two-dimensional material based on silicon and oxygen, Université Grenoble Alpes

  45. D. Jiang et al., Classification and role of modulators on crystal engineering of metal organic frameworks (MOFs). Coord. Chem. Rev. 444, 214064 (2021)

    Article  CAS  Google Scholar 

  46. Z.R. Ramadhan et al., Introducing stacking faults into three-dimensional branched nickel nanoparticles for improved catalytic activity. J. Am. Chem. Soc. 144(25), 11094–11098 (2022)

    Article  CAS  PubMed  Google Scholar 

  47. R. Marthi et al., Role of stacking faults and hydroxyl groups on the lithium adsorption/desorption properties of layered H2TiO3. Mater. Today Adv. 14, 100237 (2022)

    Article  CAS  Google Scholar 

  48. R. Zhang et al., Highly sensitive acetone gas sensor based on g-C3N4 decorated MgFe2O4 porous microspheres composites. Sensors. 18(7), 2211 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  49. S. Chi et al., Magnetically separated meso-g-C3N4/Fe3O4: bifuctional composites for removal of arsenite by simultaneous visible-light catalysis and adsorption. Ind. Eng. Chem. Res. 55(46), 12060–12067 (2016)

    Article  CAS  Google Scholar 

  50. E. Muhumuza et al., Perovskite-type LaCoO3 as an efficient and green catalyst for sustainable partial oxidation of cyclohexane. Ind. Eng. Chem. Res. 59(49), 21322–21332 (2020)

    Article  CAS  Google Scholar 

  51. M. Ali et al., Detoxification of pb (II) from aquatic media via CaMgO2@ g-C3N4 nanocomposite. Mater. Lett. 322, 132501 (2022)

    Article  CAS  Google Scholar 

  52. H. Wang et al., Molecule-assisted modulation of the high-valence Co3 + in 3D honeycomb-like CoxSy networks for high-performance solid-state asymmetric supercapacitors. Sci. China Mater. 64, 840–851 (2021)

    Article  CAS  Google Scholar 

  53. X. Jiang et al., Cation substitution of B-site in LaCoO3 for bifunctional oxygen electrocatalytic activities. J. Alloys Compd. 878, 160433 (2021)

    Article  CAS  Google Scholar 

  54. Z. Jin et al., One-step impregnation method to prepare direct Z-scheme LaCoO3/g-C3N4 heterojunction photocatalysts for phenol degradation under visible light. Appl. Surf. Sci. 491, 432–442 (2019)

    Article  CAS  Google Scholar 

  55. R. Wang et al., Z-scheme LaCoO3/g-C3N4 for efficient full-spectrum light-simulated solar photocatalytic hydrogen generation. ACS Omega. 5(47), 30373–30382 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. J. Luo et al., Utilization of LaCoO3 as an efficient co-catalyst to boost the visible light photocatalytic performance of g-C3N4. Sep. Purif. Technol. 201, 309–317 (2018)

    Article  CAS  Google Scholar 

  57. S. Singh, S. Shukla, Adsorptive removal of cobalt ions on raw and alkali-treated lemon peels. Int. J. Environ. Sci. Technol. 13, 165–178 (2016)

    Article  CAS  Google Scholar 

  58. A. Swelam et al., An economically viable method for the removal of cobalt ions from aqueous solution using raw and modified rice straw. HBRC J. 14(3), 255–262 (2018)

    Article  Google Scholar 

  59. A. Hashem et al., Novel application of the esterification product of 2, 3-dihydroxybutanedioic acid and cellulosic biomass for cobalt ion adsorption. Korean J. Chem. Eng. 38, 2256–2264 (2021)

    Article  CAS  Google Scholar 

  60. B. Zhang, Y. Wu, Y. Fan, Synthesis of novel magnetic NiFe 2 O 4 nanocomposite grafted chitosan and the adsorption mechanism of cr (VI). J. Inorg. Organomet. Polym Mater. 29, 290–301 (2019)

    Article  CAS  Google Scholar 

  61. H. Wang et al., A novel magnetic cd (II) ion-imprinted polymer as a selective sorbent for the removal of cadmium ions from aqueous solution. J. Inorg. Organomet. Polym Mater. 29, 1874–1885 (2019)

    Article  CAS  Google Scholar 

  62. X. Guo, J. Wang, Comparison of linearization methods for modeling the Langmuir adsorption isotherm. J. Mol. Liq. 296, 111850 (2019)

    Article  CAS  Google Scholar 

  63. B.S. Stromer, B. Woodbury, C.F. Williams, Tylosin sorption to diatomaceous earth described by Langmuir isotherm and Freundlich isotherm models. Chemosphere. 193, 912–920 (2018)

    Article  CAS  PubMed  Google Scholar 

  64. A. Kurniawan et al., Removal of basic dyes in binary system by adsorption using rarasaponin–bentonite: revisited of extended Langmuir model. Chem. Eng. J. 189, 264–274 (2012)

    Article  Google Scholar 

  65. S. Al-Shahrani, Treatment of wastewater contaminated with cobalt using Saudi activated bentonite. Alexandria Eng. J. 53(1), 205–211 (2014)

    Article  Google Scholar 

  66. N.N. Nassar, Kinetics, equilibrium and thermodynamic studies on the adsorptive removal of nickel, cadmium and cobalt from wastewater by superparamagnetic iron oxide nanoadsorbents. Can. J. Chem. Eng. 90(5), 1231–1238 (2012)

    Article  CAS  Google Scholar 

  67. M.M. Hamed, S. Rizk, A. Nayl, Adsorption kinetics and modeling of gadolinium and cobalt ions sorption by an ion-exchange resin. Part. Sci. Technol. 34(6), 716–724 (2016)

    Article  CAS  Google Scholar 

  68. X. Xu et al., Oyster shell as a low-cost adsorbent for removing heavy metal ions from wastewater. Pol. J. Environ. Stud. 28(4), 2949–2959 (2019)

    Article  CAS  Google Scholar 

  69. Y.-S. Ho, G. McKay, Pseudo-second order model for sorption processes. Process Biochem. 34(5), 451–465 (1999)

    Article  CAS  Google Scholar 

  70. H. Moussout et al., Critical of linear and nonlinear equations of pseudo-first order and pseudo-second order kinetic models. Karbala Int. J. Mod. Sci. 4(2), 244–254 (2018)

    Article  Google Scholar 

  71. R. Ezzati, Derivation of pseudo-first-order, pseudo-second-order and modified pseudo-first-order rate equations from Langmuir and Freundlich isotherms for adsorption. Chem. Eng. J. 392, 123705 (2020)

    Article  CAS  Google Scholar 

  72. E. Ugwu, A. Othmani, C. Nnaji, A review on zeolites as cost-effective adsorbents for removal of heavy metals from aqueous environment. Int. J. Environ. Sci. Technol. 19(8), 8061–8084 (2022)

    Article  CAS  Google Scholar 

  73. S. Arivoli et al., Adsorption dynamics of copper ion by low cost activated carbon. Arab. J. Sci. Eng. 34(1A), 1–12 (2009)

    CAS  Google Scholar 

  74. C. Chigbundu, K. Adebowale, Exploration of intercalated kaolinite clay for the uptake of basic dye by adsorption – equilibrium, kinetics and thermodynamic studies. J. Chem. Soc. Nigeria (2021). https://doi.org/10.46602/jcsn.v46i1.590

    Article  Google Scholar 

  75. V.N. Narwade, R.S. Khairnar, V. Kokol, Situ synthesized hydroxyapatite—cellulose nanofibrils as biosorbents for heavy metal ions removal. J. Polym. Environ. 26, 2130–2141 (2018)

    Article  CAS  Google Scholar 

  76. Y. Zhang et al., Highly efficient adsorption of copper ions by a PVP-reduced graphene oxide based on a new adsorptions mechanism. Nano-Micro Lett. 6, 80–87 (2014)

    Article  Google Scholar 

  77. J.P. Vareda, On validity, physical meaning, mechanism insights and regression of adsorption kinetic models. J. Mol. Liq. 376, 121416 (2023)

    Article  CAS  Google Scholar 

  78. A. Zendelska et al., Kinetic studies of zinc ions removal from aqueous solution by adsorption on natural zeolite. Int. J. Sci. Environ. Technol. 3(4), 1303–1318 (2014)

    Google Scholar 

  79. E.D. Revellame et al., Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: a review. Clean. Eng. Technol. 1, 100032 (2020)

    Article  Google Scholar 

  80. J. Wang, X. Guo, Adsorption kinetic models: physical meanings, applications, and solving methods. J. Hazard. Mater. 390, 122156 (2020)

    Article  CAS  PubMed  Google Scholar 

  81. A.T. Ojedokun, O.S. Bello, Kinetic modeling of liquid-phase adsorption of Congo red dye using guava leaf-based activated carbon. Appl. Water Sci. 7, 1965–1977 (2017)

    Article  CAS  Google Scholar 

  82. Z. Ghasemi et al., Thermodynamic and kinetic studies for the adsorption of hg (II) by nano-TiO2 from aqueous solution. Adv. Powder Technol. 23(2), 148–156 (2012)

    Article  CAS  Google Scholar 

  83. M. Xu et al., Nickel (II) removal from water using silica-based hybrid adsorbents: fabrication and adsorption kinetics. Chin. J. Chem. Eng. 24(10), 1353–1359 (2016)

    Article  CAS  Google Scholar 

  84. A. Syafiuddin et al., Application of the kinetic and isotherm models for better understanding of the behaviors of silver nanoparticles adsorption onto different adsorbents. J. Environ. Manage. 218, 59–70 (2018)

    Article  CAS  PubMed  Google Scholar 

  85. Y.M. Magdy, H. Altaher, E. ElQada, Removal of three nitrophenols from aqueous solutions by adsorption onto char ash: equilibrium and kinetic modeling. Appl. Water Sci. 8, 1–15 (2018)

    Article  CAS  Google Scholar 

  86. R.A. AbuMousa et al., Efficient mesoporous MgO/g-C3N4 for Heavy Metal Uptake: modeling process and adsorption mechanism. Nanomaterials. 12(22), 3945 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. S. Wang et al., Magnetic Fe3O4/CeO2/g-C3N4 composites with a visible-light response as a high efficiency Fenton photocatalyst to synergistically degrade tetracycline. Sep. Purif. Technol. 278, 119609 (2021)

    Article  Google Scholar 

  88. J. Ma et al., Facile fabrication of Ag/PANI/g-C3N4 composite with enhanced electrochemical performance as supercapacitor electrode. J. Electroanal. Chem. 835, 346–353 (2019)

    Article  CAS  Google Scholar 

  89. N.D. Shooto, P.M. Thabede, E.B. Naidoo, Simultaneous adsorptive study of toxic metal ions in quaternary system from aqueous solution using low cost black cumin seeds (Nigella sativa) adsorbents. S. Afr. J. Chem. Eng. 30, 15–27 (2019)

    Google Scholar 

  90. T. Alsawy et al., A comprehensive review on the chemical regeneration of biochar adsorbent for sustainable wastewater treatment. Npj Clean. Water. 5(1), 29 (2022)

    Article  CAS  Google Scholar 

  91. M. Abbas, S. Kaddour, M. Trari, Kinetic and equilibrium studies of cobalt adsorption on apricot stone activated carbon. J. Ind. Eng. Chem. 20(3), 745–751 (2014)

    Article  CAS  Google Scholar 

  92. O.A. El-Shamy, R.E. El-Azabawy, O. El-Azabawy, Synthesis and characterization of magnetite-alginate nanoparticles for enhancement of nickel and cobalt ion adsorption from wastewater. J. Nanomater. (2019). https://doi.org/10.1155/2019/6326012

    Article  Google Scholar 

  93. W. Zhang et al., Optimized synthesis of novel hydrogel for the adsorption of copper and cobalt ions in wastewater. RSC Adv. 9(28), 16058–16068 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. P. Kuwer, A. Yadav, P.K. Labhasetwar, Adsorption of cupric, cadmium and cobalt ions from the aqueous stream using the composite of iron (II, III) oxide and zeolitic imidazole framework-8. Water Sci. Technol. 84(9), 2288–2303 (2021)

    Article  CAS  PubMed  Google Scholar 

  95. K.M. Diniz et al., Preparation of SiO2/Nb2O5/ZnO mixed oxide by sol–gel method and its application for adsorption studies and on-line preconcentration of cobalt ions from aqueous medium. Chem. Eng. J. 239, 233–241 (2014)

    Article  CAS  Google Scholar 

  96. S. Zhuang, Y. Yin, J. Wang, Removal of cobalt ions from aqueous solution using chitosan grafted with maleic acid by gamma radiation. Nuclear Eng. Technol. 50(1), 211–215 (2018)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (Grant No. IMSIU-RG23032).

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the study’s design, preparation of materials, data collection, and analysis. Each author submitted feedback on earlier article drafts. All authors read and authorized the completed manuscript.

Corresponding author

Correspondence to A. Modwi.

Ethics declarations

Conflict of interest

We hereby state that no financial or associational ties could influence the submitted work or give it a skewed perspective.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhussain, H., Elamin, N.Y., Alqarni, L.S. et al. Construction and XRD analysis of La@Co3O4@g-C3N4 nanostructures for removal of Co ions from contaminated water. J Mater Sci: Mater Electron 35, 588 (2024). https://doi.org/10.1007/s10854-024-12326-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12326-9

Navigation