Skip to main content
Log in

Effects of nickel content and annealing temperature on the magnetic characteristics of nanostructured FeCu alloys

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study investigates the impact of varied nickel content levels (ranging from 0 to 20 wt%) and annealing temperatures (ranging from 300 to 600 °C) on the magnetic and structural characteristics of nanostructured FeCu alloys. The nanostructured alloys were synthesized using high-energy ball milling, followed by annealing in a controlled atmosphere. The structural evolution and phase formation were analyzed using X-ray diffraction (XRD), revealing the presence of a bimodal nanocrystalline structure. Magnetic properties were characterized using a vibrating sample magnetometer (VSM), showing that an increase in nickel content enhances the saturation magnetization, reaching a maximum at 15-wt% Ni. Additionally, higher annealing temperatures lead to reduced grain size and increased magnetic coercivity. These findings underscore the substantial influence of nickel content and annealing temperature control on the magnetic and structural attributes of nanostructured FeCu alloys. The results not only contribute to a better understanding of the fundamental properties of these alloys but also highlight their potential utility in diverse technological applications, such as magnetic sensors, data storage devices, and magnetic shielding materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the present study are accessible upon reasonable request to the corresponding author.

References

  1. H. Gleiter, Nanostructured materials: basic concepts and microstructure. Acta Mater. 48, 1 (2000)

    Article  CAS  Google Scholar 

  2. T. Simsek, B. Avar, S. Ozcan, A.K. Chattopadhyay, B. Kalkan, Solid-state synthesis and characterization of the stable nanostructured Ni21Ti2B6 phase. Bassic Solid State Phys. 258(5), 2000571 (2021). https://doi.org/10.1002/pssb.202000571

    Article  CAS  Google Scholar 

  3. B. Kalkan, T. Simsek, B. Avar, Local atomic configurations in mechanically alloyed amorphous (FeCoNi)70Ti10B20 powders. J. Alloys Compd. (2023). https://doi.org/10.1016/j.jallcom.2023.170667

    Article  Google Scholar 

  4. B. Avar, A.K. Chattopadhyay, T. Simsek, T. Simsek, S. Ozcan, B. Kalkan, Synthesis and characterization of amorphous-nanocrystalline Fe70Cr10Nb10B10 powders by mechanical alloying. Appl. Phys. A 128, 537 (2022). https://doi.org/10.1007/s00339-022-05680-0

    Article  CAS  Google Scholar 

  5. C. Suryanarayana, A.A. Al-Joubori, Z. Wang, Nanostructured materials and nanocomposites by mechanical alloying: an overview. Met. Mater. Int. 28, 41 (2022)

    Article  CAS  Google Scholar 

  6. J.Z. Jiang, C. Gente, R. Bormann, Mechanical alloying in the Fe–Cu system. Mater. Sci. Eng. A 242, 268 (1998)

    Article  Google Scholar 

  7. A.H. Alami, A.A. Hawili, N. Chaker, Experiments on surface hardening of aluminum components by high-energy centrifugal milling. Int. J. Adv. Manuf. Tech. 95, 3855 (2018)

    Article  Google Scholar 

  8. A.H. Alami, J. Abed, M. Almheiri, A. Alketbi, C. Aokal, Fe–Cu metastable material as a mesoporous layer for dye‐sensitized solar cells. Energy Sci. Eng. 4, 166 (2016)

    Article  CAS  Google Scholar 

  9. A.H. Alami, J. Abed, M. Almheiri, A. Alketbi, The Fe–Cu metastable nano-scale compound for enhanced absorption in the UV–Vis and NIR ranges. Metall. Mater. Trans. E 2, 229–235 (2015). https://doi.org/10.1007/s40553-015-0060-y

    Article  CAS  Google Scholar 

  10. M. Al Awadhi, M. Egilmez, W. Abuzaid, A.H. Alami, Magnetic properties and non-fermi liquid behaviour in mechanically alloyed FeCu. J. Alloys Compd. 890, 161812 (2022)

    Article  Google Scholar 

  11. A. Yakin, T. Simsek, B. Avar, T. Simsek, A.K. Chattopadhyay, A review of soft magnetic properties of mechanically alloyed amorphous and nanocrystalline powders. Emergent Mater. 6, 453–481 (2023). https://doi.org/10.1007/s42247-023-00485-0

    Article  CAS  Google Scholar 

  12. A. Yakın, T. Şimşek, B. Avar, A.K. Chattopadhyay, S. Özcan, T. Şimşek, The effect of Cr and Nb addition on the structural, morphological, and magnetic properties of the mechanically alloyed high entropy FeCoNi alloys. Appl. Phys. A 128, 686 (2022). https://doi.org/10.1007/s00339-022-05836-y

    Article  CAS  Google Scholar 

  13. E.F. Kneller, Magnetic and structural properties of metastable Fe–Cu solid solutions. J. Appl. Phys. 35, 2210 (1964)

    Article  CAS  Google Scholar 

  14. C.L. Fu, A.J. Freeman, Electronic and magnetic properties of the fcc fe (001) thin films: Fe/Cu (001) and Cu/Fe/Cu (001). Phys. Rev. B 35, 925 (1987)

    Article  CAS  Google Scholar 

  15. H.R. Lashgari, D. Chu, S. Xie, H. Sun, M. Ferry, S. Li, Composition dependence of the microstructure and soft magnetic properties of Fe-based amorphous/nanocrystalline alloys: a review study. J. Non-cryst. Solids. 391, 61 (2014)

    Article  CAS  Google Scholar 

  16. K. Hono, D.H. Ping, M. Ohnuma, H. Onodera, Cu clustering and Si partitioning in the early crystallization stage of an Fe73.5Si13.5B9Nb3Cu1 amorphous alloy. Acta Mater. 47, 997 (1999)

    Article  CAS  Google Scholar 

  17. S. Mourdikoudis, R.M. Pallares, N.T. Thanh, Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale. 10, 12934 (2018)

    Article  Google Scholar 

  18. Y.I. Petrov, E.A. Shafranovsky, N.S. Perov, A.P. Kuznetsov, G.V. Karpov, Magnetism of aerosol FeCu nanoparticles in a wide concentration range. Doklady Phys. Chem. 449, 78 (2013)

    Article  CAS  Google Scholar 

  19. S. Shu, B.D. Wirth, P.B. Wells, D.D. Morgan, G.R. Odette, Multi-technique characterization of the precipitates in thermally aged and neutron irradiated Fe–Cu and Fe–Cu–Mn model alloys: atom probe tomography reconstruction implications. Acta Mater. 146, 237 (2018)

    Article  CAS  Google Scholar 

  20. A. Younes, N. Dilmi, M. Khorchef, A. Bouamer, N.E. Bacha, M. Zergoug, Structural and magnetic properties of FeCuNi nanostructured produced by mechanical alloying. Appl. Surf. Sci. 446, 258 (2018)

    Article  CAS  Google Scholar 

  21. M.R. Rahul, G. Phanikumar, Solidification behaviour of undercooled equiatomic FeCuNi alloy. J. Alloys Compd. 815, 152334 (2020)

    Article  CAS  Google Scholar 

  22. J. Li, Z. Tian, Q. Xie, S. Xiong, Component effect on microstructure of rapidly cooled FeCuNi alloys. Chem. Phys. Lett. 753, 137630 (2020)

    Article  CAS  Google Scholar 

  23. A. Younes, A. Bouamer, R. Amraoui, N. Metidji, M. Guessoum, A. Abada, Magnetic and structural properties of Fe–Ni and Fe–Ni–Gr based nanostructured alloys synthesized by mechanical alloying. J. Nano Res. 78, 1 (2023)

    Article  CAS  Google Scholar 

  24. Z. Rao, D. Ponge, F. Koermann, Y. Ikeda, O. Schneeweiss, M. Friák, Z. Li, Invar effects in FeNiCo medium entropy alloys: from an invar treasure map to alloy design. Intermetallics 111, 106520 (2019)

    Article  CAS  Google Scholar 

  25. N. Suresh Kumar, R. Padma Suvarna, K. Chandra Babu Naidu, M.S. S.R.K, R. Pothu, R. Boddula, Magnetic Alloy Materials, Properties and Applications. Alloy Mater. Their Allied Appl. (2020). https://doi.org/10.1002/9781119654919.ch5

    Article  Google Scholar 

  26. A. Younes, R. Amraoui, A. Manseri, F. Smaili, The impact of Cu, Ni and Fe2O3 on the magnetic behavior and structural properties of FeSiO2 nanocomposite synthesized through ball milling. Phys. Scr. 98, 115536 (2023)

    Article  Google Scholar 

  27. D.N. Trong, Factors affecting the depth of the Earth’s surface on the heterogeneous dynamics of Cu1–xNix alloy, x = 0.1, 0.3, 0.5, 0.7, 0.9 by molecular dynamics simulation method. Mater. Today Commun. 29, 102812 (2021)

    Article  CAS  Google Scholar 

  28. M.I. Lerner, A.V. Pervikov, E.A. Glazkova, N.V. Svarovskaya, A.S. Lozhkomoev, S.G. Psakhie, Structures of binary metallic nanoparticles produced by electrical explosion of two wires from immiscible elements. Powder Technol. 288, 371 (2016)

    Article  CAS  Google Scholar 

  29. A.H. Alami, A.A. Hawili, Synthesis, characterization and applications of FeCu alloys. Appl. Surf. Sci. Adv. 1, 100027 (2020)

    Article  Google Scholar 

  30. Y.P. Xie, S.J. Zhao, First principles study of Al and Ni segregation to the α-Fe/Cu (100) coherent interface and their effects on the interfacial cohesion. Comput. Mater. Sci. 63, 329 (2012)

    Article  CAS  Google Scholar 

  31. L.S. Zhu, S.J. Zhao, Influence of Ni on Cu precipitation in Fe–Cu–Ni ternary alloy by an atomic study. Chin. Phys. B 23, 063601 (2014)

    Article  Google Scholar 

  32. O.I. Gorbatov, Y.N.P.A. Gornostyrev, Korzhavyi, A.V. Ruban, Effect of Ni and Mn on the formation of Cu precipitates in α-Fe. Scripta Mater. 102, 11 (2015)

    Article  CAS  Google Scholar 

  33. L. Fu, J. Yang, Q. Bi, W. Liu, Combustion synthesis immiscible nanostructured Fe–Cu alloy. J. Alloys Compd. 482, L22 (2009)

    Article  CAS  Google Scholar 

  34. R.A. Ricks, P.R. Howell, R.W.K. Honeycombe, The effect of Ni on the decomposition of austenite in Fe–Cu alloys. Metall. Trans. A 10A, 1049 (1979)

    Article  CAS  Google Scholar 

  35. Y. Wang, J. Yin, X. Liu, R. Wang, H. Hou, J. Wang, Precipitation kinetics in binary Fe–Cu and Ternary Fe–Cu–Ni alloys via kMC method. Progress Nat. Science: Mater. Int. 27(4), 460–466 (2017). https://doi.org/10.1016/j.pnsc.2017.06.005

    Article  CAS  Google Scholar 

  36. A. Younes, N. Kherrouba, Eddy current and magnetic evaluation of nanostructured iron–cobalt produced by ball-milling. Emerg. Mater. Res. 11, 268 (2022)

    Google Scholar 

  37. P. Scherrer, Estimation of the size and internal structure of colloidal particles by means of röntgen. Nachr. Ges Wiss Göttingen. 2, 98–100 (1918)

    Google Scholar 

  38. C. Crozet, M. Verdier, S. Lay, Effect of cooling rates on γ→ α transformation and metastable states in Fe–Cu alloys with addition of Ni. Met. Mater. Int. 24, 681 (2018)

    Article  CAS  Google Scholar 

  39. P. Asghari-Rad, Y. Kim, N.T.C. Nguyen, H.S. Kim, Fabrication of FeCuNi alloy by mechanical alloying followed by consolidation using high-pressure torsion. J. Powder Mater. 27, 1 (2020)

    Article  Google Scholar 

  40. Y.A. Yoshizawa, S. Oguma, K. Yamauchi, New Fe-based soft magnetic alloys composed of ultrafine grain structure. J. Appl. Phys. 64, 6044 (1988)

    Article  CAS  Google Scholar 

  41. B.D. Cullity, C. D. Graham Introduction to magnetic materials, Second edition, IEEE Press, 445 Hoes Lane, Piscataway, NJ 08854, John Wiley & Sons, (2011). ISBN 978-0-471-47741-9

  42. P. Gorria, D. Martínez-Blanco, J.A. Blanco, A. Hernando, J.S. Garitaonandia, R.I. Barquín, Smith, Invar effect in fcc-FeCu solid solutions. Phys. Rev. B 69, 214421 (2004)

    Article  Google Scholar 

  43. D. Martínez-Blanco, P. Gorria, J.A. Blanco, R.I. Smith, Temperature induced phase transformations and microstructural changes in nanostructured FeCu solid solutions using in situ neutron powder thermo-diffraction. J. Alloys Compd. 483, 549 (2009)

    Article  Google Scholar 

  44. S. Khmelevskyi, P. Mohn, First-principles investigation of ferromagnetism and Invar effect in Fcc Fe–Cu alloys. Phys. Rev. B 71, 144423 (2005)

    Article  Google Scholar 

  45. M.F. De Campos, S.A. Loureiro, D. Rodrigues, M.D.C. Silva, N.B. Lima, Estimative of the stacking fault energy for a FeNi (50/50) alloy and a 316L stainless steel. Mater. Sci. Forum. 591, 3 (2008)

    Article  Google Scholar 

  46. D.A. Milkova, A.I. Bazlov, E.N. Zanaeva, A.Y. Churyumov, I.V. Strochko, E.V. Ubyivovk, A. Inoue, (Fe-Ni)-based glassy alloy containing nb and cu with excellent soft magnetic properties. J. Non-cryst. Solids 609, 122234 (2023)

    Article  CAS  Google Scholar 

  47. D. Palanisamy, A. Kovács, O. Hegde, R.E. Dunin-Borkowski, D. Raabe, T. Hickel, B. Gault, Influence of crystalline defects on magnetic nanodomains in a rare-earth-free magnetocrystalline anisotropic alloy. Phys. Rev. Mater. 5, 064403 (2021)

    Article  CAS  Google Scholar 

  48. X. Li, Z. Tian, Q. Xie, K. Dong, The topologically close-packed Fe70Cu15Ni15 nanoparticles-a simulation study. Vacuum 193, 110523 (2021)

    Article  CAS  Google Scholar 

  49. E.S.R. Gopal, Specific heats at low temperatures (Springer, New York, 2012), pp.1–240. https://doi.org/10.1007/978-1-4684-9081-7

    Book  Google Scholar 

  50. M. Amir, H. Gungunes, Y. Slimani, N. Tashkandi, H. El Sayed, F. Aldakheel, M. Sertkol, H. Sozeri, A. Manikandan, I. Ercan, Mössbauer studies and magnetic properties of cubic CuFe2O4 nanoparticles. J. Supercond. Nov. Magn. 32, 557 (2019)

    Article  CAS  Google Scholar 

  51. A. Faraz, A. Maqsood, N.M. Ahmad, F. Ur-Rehman, S. Ameer, Mg0.50Cu0.5-xNixFe2O4 spinel nanoferrites: Structural, Electrical, magnetic and YK angle studies. J. Nano Res. 17, 99 (2012)

    Article  CAS  Google Scholar 

  52. K. Tanbir, M.P. Ghosh, R.K. Singh, M. Kar, S. Mukherjee, Effect of doping different rare earth ions on microstructural, optical, and magnetic properties of nickel–cobalt ferrite nanoparticles. J. Mater. Sci. Mater. Elec. 31, 435 (2020)

    Article  CAS  Google Scholar 

  53. T. Şimşek, T. Şimşek, B. Avar, Ş Özcan, Investigation of structural and magnetic properties of the FeCoNi nanocrystalline powder alloys. Eur. J. Sci. Technol. 32, 616–621 (2021). https://doi.org/10.31590/ejosat.1048336

    Article  Google Scholar 

Download references

Funding

The author has not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrahmane Younes.

Ethics declarations

Competing interest

The authors affirm that they do not possess any recognized conflicting financial interests or personal relationships that might have seemed to influence the findings presented in this paper.

Ethical approval

This article adheres to the ethical standards set forth by the journal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Younes, A. Effects of nickel content and annealing temperature on the magnetic characteristics of nanostructured FeCu alloys. J Mater Sci: Mater Electron 35, 535 (2024). https://doi.org/10.1007/s10854-024-12291-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12291-3

Navigation