Skip to main content
Log in

Research on the synergistic effect of fluoroethylene carbonate and lithium difluoro(oxalato)borate in electrolyte on LiNi0.5Mn1.5O4-based high-voltage lithium-ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To meet the increasing demand for energy storage, it is urgent to develop high-voltage lithium-ion batteries. The electrolyte’s electrochemical window is a crucial factor that directly impacts its electrochemical performance at high-voltage. Currently, the most common high-voltage cathode material is LiNi0.5Mn1.5O4 (LNMO). This paper aims to match LNMO cathode material to develop an electrolyte with stable electrochemical performance under high-voltage. Fluoroethylene carbonate (FEC) and lithium difluoro(oxalato)borate (LiDFOB) are studied as co-solvent and additive components in LiNi0.5Mn1.5O4 (LNMO) high-voltage electrolyte, respectively. This paper reports an increase in the electrochemical window from the original 4.3 to 5.5 V through the synergistic effect of two additives. The two additives also promote the formation of CEI layers on the cathode surfaces. This film acts as a protective barrier, safeguarding the electrode material’s structure from potential damage. After undergoing 100 cycles at a temperature of 25 °C, the rate of capacity retention can achieve a value of 75.1%; after 50 cycles at 40 °C, it can reach 78.2%. Our work offers guidance for the commercial production of high-performance, high-voltage lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request. Data in the article and its supplementary information will be made available on request.

References

  1. L. Xia, S. Lee, Y. Jiang, Y. Xia, G.Z. Chen, Z. Liu, Fluorinated electrolytes for Li-Ion batteries: the Lithium Difluoro(oxalato)borate additive for stabilizing the solid Electrolyte Interphase. ACS Omega. 2, 8741–8750 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. J.C. Li, C. Ma, M.F. Chi, C.D. Liang, N.J. Dudney, Solid Electrolyte: the Key for High-Voltage Lithium batteries. Adv. Energy Mater. 5, 6 (2015)

    Article  Google Scholar 

  3. G. Cherkashinin, S.U. Sharath, W. Jaegermann, Toward enhanced electronic and ionic conductivity in olivine LiCoPO4 thin film electrode material for 5 V lithium batteries: effect of LiCo2P3O10 impurity phase. Adv. Energy Mater. 7, 1175–1178 (2017)

    Article  Google Scholar 

  4. Q. Zhong, A. Bonakdarpour, M. Zhang, Y. Gao, J.R. Dahn, Synthesis and Electrochemistry of LiNixMn2-xO4 (Cheminform, ChemInform Abstract, 2010), p. 28

    Google Scholar 

  5. R. Santhanam, B. Rambabu, High rate cycling performance of Li1.05Ni1/3Co1/3Mn1/3O2 materials prepared by sol–gel and co-precipitation methods for lithium-ion batteries. J. Power Sources. 195, 4313–4317 (2010)

    Article  CAS  Google Scholar 

  6. T. Yim, S.-G. Woo, S.H. Lim, W. Cho, J.H. Song, Y.-K. Han, Kim, 5V-class high-voltage batteries with over-lithiated oxide and a multi-functional additive. J. Mater. Chem. A 3, 6157–6167 (2015)

    Article  CAS  Google Scholar 

  7. S.F. Shaikh, S. Aftab, B. Pandit, A.M. Al-Enizi, M. Ubaidullah, S. Ekar, S. Hussain, Y.B. Khollam, P.S. More, R.S. Mane, A NiS2/C composite as an innovative anode material for sodium-ion batteries: ex situ XANES and EXAFS studies to investigate the sodium storage mechanism. Dalton Trans. 52, 11481–11488 (2023)

    Article  CAS  PubMed  Google Scholar 

  8. S. Mai, M. Xu, X. Liao, J. Hu, H. Lin, L. Xing, Y. Liao, X. Li, W. Li, Tris (trimethylsilyl) phosphite as electrolyte additive for high voltage layered lithium nickel cobalt manganese oxide cathode of lithium ion battery. Electrochim. Acta. 147, 565–571 (2014)

    Article  CAS  Google Scholar 

  9. B. Flamme, G.R. Garcia, M. Weil, M. Haddad, P. Phansavath, V. Ratovelomanana-Vidal, A. Chagnes, Guidelines to design organic electrolytes for lithium-ion batteries: environmental impact, physicochemical and electrochemical properties. Green Chem. 19, 1828–1849 (2017)

    Article  CAS  Google Scholar 

  10. B. Pandit, E.S. Goda, M. Ubaidullah, S.F. Shaikh, U.T. Nakate, A.P. Khedulkar, A.H.S. Rana, D. Kumar, -a. Doong, Hexagonal δ-MnO2 nanoplates as efficient cathode material for potassium-ion batteries. Ceram. Int. 48, 28856–28863 (2022)

    Article  CAS  Google Scholar 

  11. L. Xia, Y. Xia, C. Wang, H. Hu, S. Lee, Q. Yu, H. Chen, 5V-Class electrolytes based on fluorinated solvents for Li-Ion batteries with excellent cyclability. ChemElectroChem 2, 1707–1712 (2015)

    Article  CAS  Google Scholar 

  12. L. Hu, Z. Zhang, K. Amine, Fluorinated electrolytes for Li-ion battery: an FEC-based electrolyte for high voltage LiNi0.5Mn1.5O4/graphite couple. Electrochem. Commun. 35, 76–79 (2013)

    Article  CAS  Google Scholar 

  13. N.S. Choi, K.H. Yew, K.Y. Lee, M. Sung, H. Kim, S.S. Kim, Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode. J. Power Sources. 161, 1254–1259 (2006)

    Article  CAS  Google Scholar 

  14. R. Mogi, M. Inaba, S.K. Jeong, Y. Iriyama, T. Abe, Z. Ogumi, Effects of some organic additives on lithium deposition in propylene carbonate. J. Electrochem. Soc. 149, A1578–A1583 (2002)

    Article  CAS  Google Scholar 

  15. J. Kim, N. Go, H. Kang, A. Tron, J. Mun, Effect of Fluoroethylene Carbonate in the Electrolyte for LiNi0.5Mn1.5O4 cathode in Lithium-ion batteries. J. Electrochem. Sci. Technol. 8, 53–60 (2017)

    Article  CAS  Google Scholar 

  16. N.-S. Choi, J.-G. Han, S.-Y. Ha, I. Park, C.-K. Back, Recent advances in the electrolytes for interfacial stability of high-voltage cathodes in lithium-ion batteries. RSC Adv. 5, 2732–2748 (2015)

    Article  CAS  Google Scholar 

  17. B. Pandit, S.R. Rondiya, S.F. Shaikh, M. Ubaidullah, R. Amaral, N.Y. Dzade, E.S. Goda, A. Singh Gill, T. Ahmad, Regulated electrochemical performance of manganese oxide cathode for potassium-ion batteries: A combined experimental and first-principles density functional theory (DFT) investigation. J. Colloid  Interface Sci. 633, 886–896 (2023)

    Article  CAS  PubMed  Google Scholar 

  18. X. Zuo, C. Fan, J. Liu, X. Xiao, J. Wu, J. Nan, Effect of tris (trimethylsilyl) borate on the high voltage capacity retention of LiNi0.5Co0.2Mn0.3O2/graphite cells. J. Power Sources. 229, 308–312 (2013)

    Article  CAS  Google Scholar 

  19. Q. Yu, Z. Chen, L. Xing, D. Chen, H. Rong, Q. Liu, W. Li, Enhanced high voltage performances of layered lithium nickel cobalt manganese oxide cathode by using trimethylboroxine as electrolyte additive. Electrochim. Acta. 176, 919–925 (2015)

    Article  CAS  Google Scholar 

  20. Z. Wang, L. Xing, J. Li, M. Xu, W. Li, Triethylborate as an electrolyte additive for high voltage layered lithium nickel cobalt manganese oxide cathode of lithium ion battery. J. Power Sources. 307, 587–592 (2016)

    Article  CAS  Google Scholar 

  21. S.S. Zhang, An unique lithium salt for the improved electrolyte of Li-ion battery. Electrochem. Commun. 8, 1423–1428 (2006)

    Article  CAS  Google Scholar 

  22. S.S. Zhang, A review on electrolyte additives for lithium-ion batteries. J. Power Sources. 162, 1379–1394 (2006)

    Article  CAS  Google Scholar 

  23. L. Xia, L. Yu, D. Hu, Z.G. Chen, Research progress and perspectives on high voltage, flame retardant electrolytes for lithium-ion batteries. Acta Chim. Sin. 75, 1183–1195 (2017)

    Article  Google Scholar 

  24. J. Liu, Z. Chen, S. Busking, K. Amine, Lithium difluoro (oxalato) borate as a functional additive for lithium-ion batteries. Electrochem. Commun. 9, 475–479 (2007)

    Article  Google Scholar 

  25. J. Li, K. Xie, Y. Lai, F. Li, X. Hao, X. Chen, Y. Liu, Lithium oxalyldifluoroborate/carbonate electrolytes for LiFePO4/artificial graphite lithium-ion cells. J. Power Sources. 195, 5344–5350 (2010)

    Article  CAS  Google Scholar 

  26. M. Xu, L. Zhou, L. Hao, L. Xing, W. Li, B.L. Lucht, Investigation and application of lithium difluoro (oxalate) borate (LiDFOB) as additive to improve the thermal stability of electrolyte for lithium-ion batteries. J. Power Sources. 196, 6794–6801 (2011)

    Article  CAS  Google Scholar 

  27. M. Hu, J. Wei, L. Xing, Z. Zhou, Effect of lithium difluoro (oxalate) borate (LiDFOB) additive on the performance of high-voltage lithium-ion batteries. J. Appl. Electrochem. 42, 291–296 (2012)

    Article  CAS  Google Scholar 

  28. Z. Fang, Z. Zheng, W. Cheng, X. Zhang, K. Zhong, L. Li, Mechanism of Stability Enhancement for Adiponitrile High Voltage Electrolyte System referring to Addition of Fluoroethylene Carbonate. Front. Chem. 8, 588389 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. F. Hai, Y. Yi, J. Guo, X. Gao, W. Chen, X. Tian, W. Tang, M. Li, Indirect regulation of solvation structure in all-fluorinated electrolyte by introducing carboxylate for stable 5 V battery. Chem. Eng. J. 472, 144993 (2023)

    Article  CAS  Google Scholar 

  30. T. Yang, N. Zhang, Y. Lang, K. Sun, Enhanced rate performance of carbon-coated LiNi0.5Mn1.5O4 cathode material for lithium ion batteries. Electrochim. Acta. 56, 4058–4064 (2011)

    Article  CAS  Google Scholar 

  31. R. Santhanam, B. Rambabu, Research progress in high voltage spinel LiNi0. 5Mn1. 5O4 material. J. Power Sources. 195, 5442–5451 (2010)

    Article  CAS  Google Scholar 

  32. Y. Li, S. Wan, G.M. Veith, R.R. Unocic, M.P. Paranthaman, S. Dai, X.-G. Sun, A novel electrolyte salt additive for Lithium-Ion batteries with voltages greater than 4.7 V. Adv. Energy Mater. 7(4), 1601397 (2017)

    Article  Google Scholar 

  33. L. Dong, F. Liang, D. Wang, C. Zhu, J. Liu, D. Gui, C. Li, Safe ionic liquid-sulfolane/LiDFOB electrolytes for high voltage Li1.15(Ni0.36Mn0.64)0.85O2 lithium ion battery at elevated temperatures. Electrochim. Acta. 270, 426–433 (2018)

    Article  CAS  Google Scholar 

  34. J. Fan, T. Dong, D. Fang, X. Li, X. Mo, K. Wen, S. Chen, S. Zhang, A lithium salt additive Li2ZrF6 for enhancing the electrochemical performance of high-voltage LiNi0.5Mn1.5O4 cathode. Ionics. 24, 2965–2972 (2018)

    Article  CAS  Google Scholar 

  35. J. Chen, H. Zhang, M. Wang, J. Liu, C. Li, P. Zhang, Improving the electrochemical performance of high voltage spinel cathode at elevated temperature by a novel electrolyte additive. J. Power Sources. 303, 41–48 (2016)

    Article  Google Scholar 

  36. X. Wang, W. Xue, K. Hu, Y. Li, Y. Li, R. Huang, Adiponitrile as Lithium-Ion Battery Electrolyte Additive: A Positive and Peculiar Effect on High-Voltage Systems (ACS Applied Energy Materials, 2018)

  37. R.D.L. Sandaruwan, L. Cong, L. Ma, S. Ma, H. Wang, Tackling the Interfacial issues of Spinel LiNi0.5Mn1.5O4 by RoomTemperature spontaneous dediazonation reaction. ACS Appl. Mater. Interfaces. 13, 13264–13272 (2021)

    Article  Google Scholar 

  38. D. Lu, M. Xu, L. Zhou, A. Garsuch, B.L. Lucht, Failure mechanism of graphite/LiNi0.5Mn1.5O4 cells at high voltage and elevated temperature. J. Electrochem. Soc. 160, A3138 (2013)

    Article  CAS  Google Scholar 

  39. Y. Yang, G.Y. Huang, H. Sun, M. Ahmad, Q. Mou, H. Zhang, Preparation and electrochemical properties of mesoporous NiCo2O4 double-hemisphere used as anode for lithium-ion battery. J. Colloid Interface Sci. 529, 357–365 (2018)

    Article  CAS  PubMed  Google Scholar 

  40. W.-K. Shin, J.-H. Yoo, D.-W. Kim, Surface-modified separators prepared with conductive polymer and aluminum fluoride for lithium-ion batteries. J. Power Sources. 279, 737–744 (2015)

    Article  CAS  Google Scholar 

  41. N.P.W. Pieczonka, V. Borgel, B. Ziv, N. Leifer, V. Dargel, D. Aurbach, J.-H. Kim, Z. Liu, X. Huang, S.A. Krachkovskiy, G.R. Goward, I. Halalay, B.R. Powell, A. Manthiram, Lithium Polyacrylate (LiPAA) as an advanced binder and a passivating agent for high-voltage Li-Ion batteries. Adv. Energy Mater. 5(23), 1501008 (2015)

    Article  Google Scholar 

  42. N.P.W. Pieczonka, Z. Liu, P. Lu, K.L. Olson, J. Moote, B.R. Powell, J.-H. Kim, Understanding transition-metal dissolution behavior in LiNi0.5Mn1.5O4 high-voltage spinel for Lithium Ion batteries. J. Phys. Chem. C 117, 15947–15957 (2013)

    Article  CAS  Google Scholar 

  43. Y. Hu, L. Fan, A.M. Rao, W. Yu, C. Zhuoma, Y. Feng, Z. Qin, J. Zhou, B. Lu, Cyclic-anion salt for high-voltage stable potassium-metal batteries. Natl. Sci. Rev. 9, nwac134 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. X. Ma, H. Fu, J. Shen, D. Zhang, J. Zhou, C. Tong, A.M. Rao, J. Zhou, L. Fan, B. Lu, Green Ether Electrolytes for sustainable high-voltage Potassium Ion batteries. Angew Chem. Int. Ed. Engl. 62, e202312973 (2023)

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This project was supported by the National Natural Science Foundation of China (No. 51834008, No. 52022109, No. 52274307, and No. 21804319), National Key Research and Development Program of China (No. 2021YFC2901100), Science Foundation of China University of Petroleum, Beijing (No. 2462022QZDX008, 2462021QNX2010, No. 2462020YXZZ019 and No. 2462020YXZZ016), State Key Laboratory of Heavy Oil Processing (HON-KFKT2022-10).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by LZ and XD. The first draft of the manuscript was written by LZ and all authors commented on previous versions of the manuscript. Design and guidance of experimental ideas by TC and GH. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Tiantian Cao or Guoyong Huang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22625.4 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Dong, X., Lin, H. et al. Research on the synergistic effect of fluoroethylene carbonate and lithium difluoro(oxalato)borate in electrolyte on LiNi0.5Mn1.5O4-based high-voltage lithium-ion batteries. J Mater Sci: Mater Electron 35, 524 (2024). https://doi.org/10.1007/s10854-024-12276-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12276-2

Navigation