Skip to main content
Log in

Organic dye sequestration using Graphene Oxide–Activated Carbon (GOAC) composite unaided by linker molecule

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This research centres on crafting an environmentally sustainable and cost-efficient nanocomposite tailored for chemical adsorption applications. Employing a one-step synthesis approach, we successfully developed a Graphene Oxide-Activated Carbon (GOAC) composite that meets these criteria. Graphene oxide aggregates in water. We strategically introduced activated carbon (AC) through a facile synthesis route to overcome this issue. The GOAC composite was characterized using XRD, FESEM, Raman spectroscopy, TGA, BET, FTIR, and UV-Visible spectroscopy. In this study, maintaining the structural integrity of constituent materials is a crucial element that guarantees the efficacy of adsorption. The GOAC composite demonstrated exceptional thermal stability, amplifying its prospects for practical applications. In adsorption studies, the composite exhibited notable efficacy in removing the cationic organic dye methylene blue. This removal resulted in a remarkable maximum adsorption capacity of 272 mg/g, achieved in just 14 min. The observed adsorption behaviour aligned with the pseudo-second-order kinetic model. This study highlights the successful development of a versatile nanocomposite with promising attributes for environmental remediation. Combining graphene oxide and activated carbon addresses agglomeration challenges and imparts structural stability and high thermal resilience to the composite, making it a compelling candidate for cost-effective and efficient adsorption-driven applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. M. Ahmad, K. Yang, L. Li, Y. Fan, T. Shah, Q. Zhang et al., ACS ACS Appl. Nano Mater. 3, 6394 (2020)

    CAS  Google Scholar 

  2. B. Pan, B. Xing, Environ. Sci. Technol. 42, 9005 (2008)

    ADS  CAS  PubMed  Google Scholar 

  3. P. Lazar, F. Karlicky, P. Jurecka, M. Kocman, E. Otyepková, K. Šafářová et al., J. Am. Chem. Soc. 135, 6372 (2013)

    CAS  PubMed  Google Scholar 

  4. T.N. Khiem, H.D. Chinh, Van P. Tuan, V.T. Tan, Mater. Res. Express. 6, 075615 (2019)

    ADS  Google Scholar 

  5. H.A. Tohamy, M. ElSakhawy, S. Kamel, J. Fluoresc. 33, 423 (2023)

    CAS  PubMed  Google Scholar 

  6. Y.J. Liu, S. Liu, Z.W. Li, M.G. Ma, B. Wang, RSC Adv. 8, 7892 (2018)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. J. Jjagwe, P.W. Olupot, E. Menya, H.M. Kalibbala, J. Bioresour Bioprod. 6, 292 (2021)

    CAS  Google Scholar 

  8. N. Delgado, A. Capparelli, A. Navarro, D. Marino, J. Environ. Manage. 236, 301 (2019)

    CAS  PubMed  Google Scholar 

  9. A.M. Ismail, A.A. Menazea, H. Ali, J. Mater. Sci. Mater. Electron. 32(14), 19352–19367 (2021)

    CAS  Google Scholar 

  10. N. Amirmahani, H. Mahdizadeh, N. Seyedi, A. Nasiri, G. Yazdanpanah, J. Chin. Chem. Soc. 70(4), 869–878 (2023)

    CAS  Google Scholar 

  11. N.M. Hosny, S. Rady, F.I.E. Dossoki, J. Iran. Chem. Soc. 8, 1–11 (2022)

    Google Scholar 

  12. A. Arabpour, S. Dan, H. Hashemipour, Arab. J. Chem. 14, 103003 (2021)

    CAS  Google Scholar 

  13. M.K. Ahmed, A.A. Menazea, S.F. Mansour, R. Al-Wafi, J. Mater. Res. Technol. 9(5), 7472–7485 (2020)

    CAS  Google Scholar 

  14. E.H. Eldrehmy, Y.S. Alghamdi, H.H. Amer, M.H. Yassin, S.A. Mostafa, M.E. Moustapha, A.A. Menazea, Diam. Relat. Mater. 126(4), 109121 (2022)

    ADS  CAS  Google Scholar 

  15. T.Y. Ying, A.A. Raman, M.M. Bello, A. Buthiyappan, Korean J. Chem. Eng. 37, 2179 (2020)

    CAS  Google Scholar 

  16. A.M. Vargas, A.L. Cazetta, M.H. Kunita, T.L. Silva, V.C. Almeida, Chem. Eng. J. 168, 722 (2011)

    CAS  Google Scholar 

  17. A. Wilczak, T.M. Keinath, Water Environ. Res. 65, 238 (1993)

    CAS  Google Scholar 

  18. M. Machida, Y. Kikuchi, M. Aikawa, H. Tatsumoto, Colloids Surf. A: Physicochem Eng. 240, 179 (2004)

    CAS  Google Scholar 

  19. K. Dai, X. Peng, P. Yang, M. Li, C. Tang, W. Zhuang et al., J. Environ. Chem. Eng. 8, 104283 (2020)

    CAS  Google Scholar 

  20. H. Li, L. Pan, C. Nie, Y. Liu, Z. Sun, J. Mater. Chem. 22, 15556 (2012)

    CAS  Google Scholar 

  21. A.I. Abd-Elhamid, E.A. Elgoud, S.S. Emam, H.F. Aly, Sci. Rep. 12, 9204 (2022)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Z. Yang, X. Ju, H. Liao, Z. Meng, H. Ning, Y. Li, Z. Chen et al., ACS Omega. 6, 19799 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. X. Liu, J. Wang, Sci. Total Environ. 749, 141524 (2020)

    ADS  CAS  PubMed  Google Scholar 

  24. N. Saeidi, M. Parvini, Z. Niavarani, J. Environ. Chem. Eng. 3, 2697 (2015)

    CAS  Google Scholar 

  25. X. Qiu, Z. Xiao, L. Wang, L.Z. Fan, Carbon. 130, 196 (2018)

    CAS  Google Scholar 

  26. P. Baishya, T.K. Maji, Int. J. Biol. Macromol. 115, 970 (2018)

    CAS  PubMed  Google Scholar 

  27. A. Bhattacharyya, S. Ghorai, D. Rana, I. Roy, G. Sarkar, N.R. Saha, J.T. Orasugh, S. De, S. Sadhukhan, D. Chattopadhyay, Mater. Chem. Phys. 260, 124090 (2021)

    CAS  Google Scholar 

  28. A. Pal, K. Uddin, K.A. Rocky, K. Thu, B.B. Saha, Int. J. Refrig. 106, 558 (2019)

    CAS  Google Scholar 

  29. P. Ndagijimana, H. Rong, P. Ndokoye, J.P. Mwizerwa, F. Nkinahamira, S. Luo et al., J. Clean. Prod. 417, 138006 (2023)

    CAS  Google Scholar 

  30. A. Nasiri, S. Rajabi, M. Hashemi, H. Nasab, Sep. Purif. Technol. 296, 121366 (2022)

    CAS  Google Scholar 

  31. A. Nasiri, M.R. Heidari, N. Javid, G. Yazdanpanah, J. Mater. Sci. Mater. Electron. 33(33), 25103–25126 (2022)

    CAS  Google Scholar 

  32. F.E. Arias, A. Beneduci, F. Chidichimo, E. Furia, S. Straface, Chemosphere. 180, 11 (2017)

    ADS  Google Scholar 

  33. W. Zhang, C. Zhou, W. Zhou, A. Lei, Q. Zhang, Q. Wan et al., Bull. Environ. Contam. Toxicol. 87, 86 (2011)

    CAS  PubMed  Google Scholar 

  34. L. Chen, J. Yang, X. Zeng, L. Zhang, W. Yuan, Mater. Express. 3, 281 (2013)

    CAS  Google Scholar 

  35. C. Pelekani, V.L. Snoeyink, Carbon. 38, 1423 (2000)

    CAS  Google Scholar 

  36. P.T. Huong, N. Tu, H. Lan, Van N. Quy, P.A. Tuan, N.X. Dinh et al., RSC Adv. 8, 12376 (2018)

    ADS  Google Scholar 

  37. V. Georgakilas, J.N. Tiwari, K.C. Kemp, J.A. Perman, A.B. Bourlinos, K.S. Kim, R. Zboril, Chem. Rev. 116, 5464 (2016)

    CAS  PubMed  Google Scholar 

  38. E.A. El-Sharkaway, R.M. Kamel, I.M. El-Sherbiny, S.S. Gharib, Environ. Technol. 41, 2854 (2019)

    PubMed  Google Scholar 

  39. M. Verma, I. Lee, J. Oh, V. Kumar, H. Kim, Chemosphere 287, 132385 (2022)

    CAS  PubMed  Google Scholar 

  40. L. Ai, C. Zhang, Z. Chen, J. Hazard. Mater. 192, 1515 (2011)

    CAS  PubMed  Google Scholar 

  41. G. Xie, P. Xi, H. Liu, F. Chen, L. Huang, Y. Shi et al., J. Mater. Chem. 22, 1033 (2012)

    CAS  Google Scholar 

  42. L. Li, L. Fan, H. Duan, X. Wang, C. Luo, RSC Adv. 4, 37114 (2014)

    ADS  CAS  Google Scholar 

  43. L. Fan, C. Luo, X. Li, F. Lu, H. Qiu, M. Sun, J. Hazard. Mater. 215, 272 (2012)

    PubMed  Google Scholar 

  44. L. Fan, C. Luo, M. Sun, H. Qiu, X. Li, Colloids Surf. B 103, 601 (2013)

    CAS  Google Scholar 

  45. G.K. Ramesha, A.V. Kumara, H.B. Muralidhara, S. Sampath, J. Colloid Interface Sci. 361, 270 (2011)

    ADS  CAS  PubMed  Google Scholar 

  46. S.J. Ajeel, A.A. Beddai, A.M. Almohaisen, Mater. Today: Proc. 51, 289 (2022)

    CAS  Google Scholar 

  47. X. Zhang, Y. Li, M. Li, Q. Du, H. Li, Y. Wang et al., Int. J. Cloth. Sci. 33, 590 (2021)

    Google Scholar 

  48. J.H. Deng, X.R. Zhang, G.M. Zeng, J.L. Gong, Q.Y. Niu, J. Liang, Chem. Eng. J. 226, 189 (2013)

    CAS  Google Scholar 

  49. L. Ai, C. Zhang, Z. Chen, J. Hazard. Mater. 192, 1515 (2012)

    Google Scholar 

  50. H.V. Tran, L.T. Bui, T.T. Dinh, D.H. Le, C.D. Huynh, A.X. Trinh, Mater. Res. Express. 4, 035701 (2017)

    ADS  Google Scholar 

  51. T. Ahmed, S.S. Gupta, World. 9, 28 (2021)

    CAS  Google Scholar 

  52. W. Shao, Y. Ma, P. Jin, H. Yang, Int. J. Environ. Technol. Manag. 23, 386 (2020)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Kerala State Council for Science, Technology & Environment—SRS Project 107/2016. Both authors thank the Central Sophisticated Instrumentation Facility (CSIF), University of Calicut, Kerala, for providing FESEM facilities. The authors would also like to thank FIST2 (DST, Government of India) for providing the X-ray diffraction facility and UGC-SAP for the microRaman facility in the Department of Physics, University of Calicut.

Funding

This work was supported by the Kerala State Council for Science, Technology and Environment-SRS Project 107/2016. The authors would also like to thank UGC-SAP and FIST2 (DST, Government of India) for providing the research facilities in the Department of Physics, University of Calicut.

Author information

Authors and Affiliations

Authors

Contributions

Aruna Unnikrishnan contributed towards conceptualization; data curation; investigation; methodology; validation; visualization; formal analysis; and roles/writing—original draft. Libu K. Alexander contributed towards conceptualization; funding acquisition; supervision; methodology; validation; and writing—review and editing.

Corresponding author

Correspondence to Libu K. Alexander.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1192.6 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unnikrishnan, A., Alexander, L.K. Organic dye sequestration using Graphene Oxide–Activated Carbon (GOAC) composite unaided by linker molecule. J Mater Sci: Mater Electron 35, 417 (2024). https://doi.org/10.1007/s10854-024-12230-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12230-2

Navigation