Skip to main content
Log in

A supercapacitor with large capacitance and pressure resistance based on multifunctional organogel

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A novel multifunctional organogel polyelectrolyte was prepared via esterification (polyvinyl alcohol (PVA)/trimesic acid (TA)) and Lewis acid–base reaction (PVA–TA/phenylenediamine) in dimethyl sulfoxide solvent. Organogel electrolytes possess several desirable properties, including excellent mechanical properties (2.1 kg weight), high toughness, high-temperature resistance (60 °C), large ionic conductivity (45.45 mS cm−1), sizeable specific capacitance (322.5 F g−1) and high mass energy density (28.67 W h kg−1). Furthermore, the high scanning rate of 50 mV s−1 maintains the high-speed performance of the SC in the ideal CV state. As a practical application, a digital watch is lit up by two capacitors in series, demonstrating excellent practicability of the equipment in the field of energy storage. In addition, on account of their remarkable conductivity and flexibility, the PVA/TA/PPD organogels can be made into a touch pen (T-pen) for smartphones or tablets, which opens up possibilities and potential for the development of some operational electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data related to this article have been provided in this article.

References

  1. J. Zhao, J.W. Gong, G. Wang et al., A self-healing hydrogel electrolyte for flexible solid-state supercapacitors. Chem. Eng. J. 401, 125456 (2022)

    Google Scholar 

  2. Z.F. Wang, H.F. Li, Z.J. Tang et al., Hydrogel electrolytes for flexible aqueous energy storage devices. Adv. Funct. Mater. 28, 1804560 (2018)

    Google Scholar 

  3. K.J. Sun, F.T. Ran, G.H. Zhao et al., High energy density of quasi-solid-state supercapacitor based on redox-mediated gel polymer electrolyte. Adv. RSC 6, 55225–55232 (2016)

    CAS  Google Scholar 

  4. G.F. Ma, E.K. Feng, K.J. Sun et al., A novel and high-effective redox-mediated gel polymer electrolyte for supercapacitor. Electrochim. Acta 135, 461–466 (2014)

    CAS  Google Scholar 

  5. X. Yang, F. Zhang, L. Zhang et al., A high-performance graphene oxide-doped ion gel as gel polymer electrolyte for all-solid-state supercapacitor applications. Adv. Funct. Mater. 23, 3353–3360 (2013)

    CAS  Google Scholar 

  6. J.J. Li, L.F. Geng, G. Wang et al., Self-healable gels for use in wearable devices. Chem. Mater. 29, 8932–8952 (2017)

    CAS  Google Scholar 

  7. H.B. Huang, J.L. Yao, L. Li et al., Reinforced polyaniline/polyvinyl alcohol conducting hydrogel from a freezing–thawing method as self-supported electrode for supercapacitors. J. Mater. Sci. 51, 8728–8736 (2016)

    ADS  CAS  Google Scholar 

  8. X.X. Ma, Y. Gao, Y. Geng et al., A multifunctional organogel polyelectrolyte for flexible supercapacitors. ACS Appl. Energy Matter. 5, 9303–9308 (2022)

    CAS  Google Scholar 

  9. H.Y. Liao, F.L. Zhou, Z.Z. Zhang et al., A self-healable and mechanical toughness flexible supercapacitor based on polyacrylic acid hydrogel electrolyte. Chem. Eng. J. 357, 428–434 (2019)

    CAS  Google Scholar 

  10. S. Wu, D.Y. Lou, H.Y. Wang et al., One-pot synthesis of anti-freezing carrageenan/polyacrylamide double-network hydrogel electrolyte for low-temperature flexible supercapacitors. Eng. J. 435, 135057 (2022)

    CAS  Google Scholar 

  11. J. Wang, H.C. Chen, Y.H. Xiao et al., PAMPS/PVA/MMT semi-interpenetrating polymer network hydrogel electrolyte for solid-state supercapacitors. Int. J. Electrochem. Sci. 14, 1817–1829 (2019)

    Google Scholar 

  12. K. Chen, Z.H. Wu, Y.T. Liu et al., Injectable double-crosslinked adhesive hydrogels with high mechanical resilience and effective energy dissipation for joint wound treatment. Adv. Funct. Mater. 32, 2109687 (2021)

    Google Scholar 

  13. G. Wang, G.Y. Jiang, Y. Zhu et al., Developing cellulosic functional materials from multi-scale strategy and applications in flexible bioelectronic devices. Carbohydr. Polym. 283, 119160 (2022)

    CAS  PubMed  Google Scholar 

  14. G.Y. Jiang, G. Wang, Y. Zhu et al., A scalable bacterial cellulose ionogel for multisensory electronic ski. Research 2022, 9814767 (2022)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. C.Y. Shao, L. Meng, C. Cui et al., An integrated self-healable and robust conductive hydrogel for dynamically self-adhesive and highly conformable electronic skin. J. Mater. Chem. C 7, 15208–15218 (2019)

    CAS  Google Scholar 

  16. C.Y. Shao, H.L. Chang, M. Wang et al., High-strength, tough, high-strength, tough, and self-healing nanocomposite physical hydrogels based on the synergistic effects of dynamic hydrogen bond and dual coordination bonds. ACS Appl. Mater. Interfaces 9, 28305–28318 (2017)

    CAS  PubMed  Google Scholar 

  17. H.M. Yu, N. Rouelle, A.D. Qiu et al., Hydrogen bonding-reinforced hydrogel electrolyte for flexible, robust, and all-in-one supercapacitor with excellent low temperature tolerance. ACS Appl. Mater. Interfaces 12, 37977–37985 (2020)

    CAS  PubMed  Google Scholar 

  18. S.Q. Liu, Y.H. Zhong, X.L. Zhang et al., Highly deformable, conductive double-network hydrogel electrolytes for durable and flexible supercapacitors. ACS Appl. Mater. Interfaces 14, 15641–15652 (2022)

    CAS  PubMed  Google Scholar 

  19. G.Q. Chen, O.D. Hu, J. Lu et al., Highly flexible and adhesive poly(vinyl alcohol)/poly(acrylic amide-co-2-acrylamido-2-methylpropane sulfonic acid)/glycerin hydrogel electrolyte for stretchable and resumable supercapacitor. Chem. Eng. J. 425, 131505 (2021)

    ADS  CAS  Google Scholar 

  20. Y. Yang, D. Sha, L. Sun et al., Charged group-modified poly(vinyl alcohol) hydrogels: preparation and antibacterial property. React. Funct. Polym. 154, 104635 (2020)

    CAS  Google Scholar 

  21. N. Raravikar, A. Dobos, E. Narayanan et al., Investigation into pseudo-capacitance behavior of glycoside-containing hydrogels. ACS Appl. Mater. Interfaces 9, 3554–3561 (2017)

    CAS  PubMed  Google Scholar 

  22. X.X. Ma, Y.T. Geng, Y. Gao et al., Preparation of a multifunctional organogel and its electrochemical properties. Soft Matter 18, 5166–5170 (2022)

    CAS  PubMed  Google Scholar 

  23. Y. Yang, K.P. Wang, Q. Zhang et al., Anionic organo-hydrogel electrolyte with enhanced ionic conductivity and balanced mechanical properties for flexible supercapacitors. J. Mater. Chem. A 10, 11287 (2022)

    Google Scholar 

  24. H.Y. Wang, X.L. Li, D.Q. Jiang et al., Organohydrogel electrolyte-based flexible zinc-ion hybrid supercapacitors with dendrite-free anode, broad temperature adaptability and ultralong cycling life. J. Power Sources 528, 231210 (2022)

    CAS  Google Scholar 

  25. J.W. Chen, Q.Y. Yu, D.Y. Shi et al., Tough and antifreezing organohydrogel electrolyte for flexible supercapacitors with wide temperature stability. ACS Appl. Energy Mater. 4, 9353–9361 (2021)

    CAS  Google Scholar 

  26. C. Lu, X. Chen, All-temperature flexible supercapacitors enabled by antifreezing and thermally stable hydrogel electrolyte. Nano Lett. 20, 1907–1914 (2020)

    ADS  CAS  PubMed  Google Scholar 

  27. J.D. Zhu, S.J. Han, Q.R. Wu et al., All-in-one configured flexible supercapacitor for wide-temperature operation and integrated application. ACS Appl. Energy Matter. 6, 4157–4167 (2023)

    CAS  Google Scholar 

  28. Y.F. Ren, Y.L. Liu, S.Y. Wang et al., Stretchable supercapacitor based on a hierarchical PPy/CNT electrode and hybrid hydrogel electrolyte with a wide operating temperature. Carbon Energy 4, 527–538 (2022)

    CAS  Google Scholar 

  29. E.K. Feng, W. Gao, J.J. Li et al., Stretchable, healable, adhesive, and redox-active multifunctional supramolecular hydrogel-based flexible supercapacitor. ACS Sustain. Chem. Eng. 8, 3311–3320 (2020)

    CAS  Google Scholar 

  30. H. Peng, X.J. Gao, K.J. Sun et al., Physically cross-linked dual-network hydrogel electrolyte with high self-healing behavior and mechanical strength for wide-temperature tolerant flexible supercapacitor. Chem. Eng. J. 422, 130353 (2021)

    CAS  Google Scholar 

  31. X. Wang, Z.H. Xing, C. Yang et al., A stretchable and healable gelatin hydrogel assisted by hofmeister effect for all-in-one flexible supercapacitor. Energy Technol. 10, 2200897 (2022)

    CAS  Google Scholar 

  32. F.Q. Ma, L. Li, C.Y. Jia et al., All-solid-state Ti3C2Tx neutral symmetric fiber supercapacitors with high energy density and wide temperature range. J. Colloid Interface Sci. 643, 92–101 (2023)

    ADS  CAS  PubMed  Google Scholar 

  33. Y.X. Wu, S. Wang, M. Sang et al., A safeguarding and high temperature tolerant organogel electrolyte for flexible solid-state supercapacitor. J. Power Sources 505, 230083 (2021)

    CAS  Google Scholar 

  34. J.J. Xu, R.N. Jin, X.Y. Ren et al., A wide temperature-tolerant hydrogel electrolyte mediated by phosphoric acid towards flexible supercapacitors. Chem. Eng. J. 413, 127446 (2021)

    CAS  Google Scholar 

  35. H. Yang, J.J. Zhang, J.L. Yao et al., A gel polymer electrolyte based on ternary deep eutectic solvent for flexible, wide-temperature tolerant zinc-ion hybrid supercapacitors. J. Power Sources 548, 232070 (2022)

    CAS  Google Scholar 

  36. X.B. Zang, R.J. Zhang, Z. Zhen et al., Flexible, temperature-tolerant supercapacitor based on hybrid carbon film electrodes. Nano Energy 40, 224–232 (2017)

    CAS  Google Scholar 

  37. A. Chaichi, G. Venugopalan, R. Devireddy et al., A solid-state and flexible supercapacitor that operates across a wide temperature range. ACS Appl. Energy Mater. 3, 5693–5704 (2020)

    CAS  Google Scholar 

  38. Y.N. Liu, H.L. Li, X. Wang et al., Flexible supercapacitors with high capacitance retention at temperatures from 20 to 100 °C based on DMSO-doped polymer hydrogel electrolytes. J. Mater. Chem. A 9, 12051–12059 (2021)

    ADS  CAS  Google Scholar 

  39. G.B. Zhou, L.Y. Yang, W.J. Li et al., A regenerable hydrogel electrolyte for flexible supercapacitors. Iscience 23, 101502 (2020)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. H.Y. Zheng, X.J. Du, Q.X. Liu et al., Self-healing and wide temperature tolerant flexible supercapacitor based on ternary-network organo-hydrogel electrolyte. Int. J. Hydrog. Energy 48, 13264–13275 (2023)

    CAS  Google Scholar 

  41. X.T. Jin, G.Q. Sun, G.F. Zhang et al., A cross-linked polyacrylamide electrolyte with high ionic conductivity for compressible supercapacitors with wide temperature tolerance. Nano Res. 12, 1199–1206 (2019)

    CAS  Google Scholar 

  42. X.X. Ma, Y. Gao, Y.T. Geng et al., Multifunctional antifreezing organogel polyelectrolyte for a flexible supercapacitor. ACS Appl. Energy Matter. 6, 1501–1510 (2023)

    CAS  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (Grant No. 21961029).

Author information

Authors and Affiliations

Authors

Contributions

XM: conceptualization, resources, funding acquisition and writing—review & editing. JZ: methodology, investigation and writing—original draft. JT and TR: characterize materials and performance tests. JW, YL and EF: performance tests.

Corresponding author

Correspondence to Xinxian Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20474 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Zhang, J., Tang, J. et al. A supercapacitor with large capacitance and pressure resistance based on multifunctional organogel. J Mater Sci: Mater Electron 35, 435 (2024). https://doi.org/10.1007/s10854-024-12223-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12223-1

Navigation