Skip to main content
Log in

Sodium silicate coatings for improving soft magnetic properties of FeSiAl powder cores with industrial compatibility

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Gas-atomized FeSiAl powder was coated with the same concentration of epoxy resin, sodium silicate (NS), silicone resin and aluminum dihydrogen phosphate and the corresponding magnetic powder cores (MPCs) were prepared, and the performance superiority of the NS coating was proved by the related performance characterization and theoretical calculations. Among the four insulating coatings, the average insulation layer thickness of NS was the thinnest (only 0.57 μm), and the density of the FeSiAl@NS was also the largest (6.56 g cm−3), indicating that the FeSiAl@NS contained the least amount of nonferromagnetic phase and was easy to reach magnetic saturation. Although the DC bias performance deteriorated, the FeSiAl@NS also exhibited the highest permeability (70.5 at 100 kHz). The loss test results showed that the core loss of the FeSiAl@NS under 100 kHz and 0.05 T was 137.2 mW cm−3, only 20% of that of other MPCs. In order to analyze the loss profile, loss separation was conducted, and it was found that the FeSiAl@NS had remarkably low hysteresis loss. Compared to other insulators, the NS coatings not only effectively improve the comprehensive performance of MPCs, but also has a wide annealing process window. The FeSiAl@NS prepared in this study has high permeability and low core loss, and exhibits industrial application potential in the field of medium and high-frequency electronics and electricity due to the simple process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All relevant data are within the manuscript and its Additional files.

References

  1. M. Hasiak, M. Miglierini, M. Lukiewski, J. Kaleta, Microstructure, magnetic properties, and applications of Co-rich HITPERM-type amorphous alloys. IEEE Trans. Magn. 48, 1665–1668 (2012). https://doi.org/10.1109/TMAG.2011.2172590

    Article  ADS  CAS  Google Scholar 

  2. Y.N. Dong, J.Q. Liu, P. Wang, H. Z, X.Y. J. P, J.Q. Li, Zhang, Study of bulk amorphous and nanocrystalline alloys fabricated by high-sphericity Fe84Si7B5C2Cr2 amorphous powders at different spark-plasma-sintering temperatures. Materials 15, 1106 (2022). https://doi.org/10.3390/ma15031106

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. H. Shokrollahi, K. Janghorban, Soft magnetic composite materials (SMCs). J. Mater. Process. Technol. 189, 1–15 (2007). https://doi.org/10.1016/j.jmatprotec.2007.02.034

    Article  CAS  Google Scholar 

  4. J.Q. Liu, Z.Q. Zhu, P. Wang, Y.F. Li, J. Pang, J.Q. Zhang, Effects of two silicone resin coatings on performance of FeSiAl magnetic powder cores. J. Iron Steel Res. Int. (2023). https://doi.org/10.1007/s42243-023-01105-1

    Article  Google Scholar 

  5. Y.B. Kim, D.H. Jang, H.K. Seok, K.Y. Kim, Fabrication of Fe–Si–B based amorphous powder cores by cold pressing and their magnetic properties. Mater. Sci. Eng. A 449, 389–393 (2007). https://doi.org/10.1016/j.msea.2006.02.394

    Article  CAS  Google Scholar 

  6. P. Wang, J.Q. Liu, Y.N. Dong, Z.Z. Zhu, J. Pang, J.Q. Zhang, Breakup process modeling and production of FeSiAl magnetic powders by close-coupled gas atomization. J. Mater. Res. Technol. 23, 730–743 (2023). https://doi.org/10.1016/j.jmrt.2022.12.169

    Article  CAS  Google Scholar 

  7. D. Liu, C. Wu, M. Yan, Investigation on sol–gel Al2O3 and hybrid phosphate-alumina insulation coatings for FeSiAl soft magnetic composites. J. Mater. Sci. 50, 6559–6566 (2015). https://doi.org/10.1007/s10853-015-9189-4

    Article  ADS  CAS  Google Scholar 

  8. X. Zhong, Y. Liu, J. Li, Y. Wang, Structure and magnetic properties of FeSiAl-based soft magnetic composite with AlN and Al2O3, insulating layer prepared by selective nitridation and oxidation. J. Magn. Magn. Mater. 324, 2631–2636 (2012). https://doi.org/10.1016/j.jmmm.2012.03.026

    Article  ADS  CAS  Google Scholar 

  9. M. Lauda, J. Füzer, P. Kollár, Magnetic properties and loss separation in FeSi/MnZnFe2O4 soft magnetic composites. J. Magn. Magn. Mater. 411, 12–17 (2016). https://doi.org/10.1016/j.jmmm.2016.03.051

    Article  ADS  CAS  Google Scholar 

  10. P. Wang, J.Q. Liu, Y.N. Dong, H. Zhao, J. Pang, J.Q. Zhang, Industrial-scale fabrication of amorphous magnetic powder cores with excellent high-frequency magnetic properties: optimization for kinds and content of insulating agents. J. Non Cryst. Solids. 602, 122082 (2023). https://doi.org/10.1016/j.jnoncrysol.2022.122082

    Article  CAS  Google Scholar 

  11. Z.G. Luo, B. Feng, D.Y. Chen, Z.J. Yang, S.W. Jiang, J. Wang, Z.Y. Wu, G.Q. Li, Y.W. Li, X.A. Fan, Preparation and magnetic performance optimization of FeSiAl/Al2O3-MnO-Al2O3 soft magnetic composites with particle size adjustment. J. Mater. Sci. Mater. Electron. 33, 850–860 (2022). https://doi.org/10.1007/s10854-021-07355-7

    Article  CAS  Google Scholar 

  12. T.C. Zhao, C.G. Chen, X.J. Wu, C.Z. Zhang, A.A. Volinsky, J.J. Hao, FeSiBCrC amorphous magnetic powder fabricated by gas-water combined atomization. J. Alloys Compd. 857, 157991 (2021). https://doi.org/10.1016/j.jallcom.2020.157991

    Article  CAS  Google Scholar 

  13. H.X. Li, H. Yang, Z.Z. Li, Z. Li, X.G. Liu, Multifunctional FeSiAl soft magnetic composites with inorganic–organic hybrid insulating layers for high mechanical strength, low core loss and comprehensive anti-corrosion. J. Electron. Mater. 51, 3418–3429 (2022). https://doi.org/10.1007/s11664-022-09602-x

    Article  ADS  CAS  Google Scholar 

  14. H. Lu, Y.Q. Dong, X.C. Liu, Z.H. Liu, Y. Ma, Y. Wu, A.N. He, J.W. Li, X.M. Wang, Enhanced magnetic properties of FeSiAl soft magnetic composites prepared by utilizing phosphate: PSA as insulating layer. J. Mater. Sci. Mater. Electron. 33, 10131–10141 (2022). https://doi.org/10.1007/s10854-022-08003-4

    Article  CAS  Google Scholar 

  15. H. Lu, Y.Q. Dong, X.C. Liu, Z.H. Liu, Y. Wu, H.J. Zhang, A.N. He, J.W. Li, X.M. Wang, Enhanced magnetic properties of FeSiAl Soft magnetic composites prepared by utilizing PSA as Resin Insulating Layer. Polymers. 13, 1350 (2021). https://doi.org/10.3390/polym13091350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. J.H. Wang, S.Q. Song, H.B. Sun, G.H. Hang, Z.L. Xue, C. Wang, W.H. Chen, D.C. Chen, Insulation layer design for soft magnetic composites by synthetically comparing their magnetic properties and coating process parameters. J. Magn. Magn. Mater. 519, 167496 (2021). https://doi.org/10.1016/j.jmmm.2020.167496

    Article  CAS  Google Scholar 

  17. B. Zhou, Y.Q. Dong, Q. Chi, Y.Q. Zhang, L. Chang, M.J. Gong, J.J. Huang, Y. Pan, X.M. Wang, Fe-based amorphous soft magnetic composites with SiO2 insulation coatings: a study on coatings thickness, microstructure and magnetic properties. Ceram. Int. 46, 13449–13459 (2020). https://doi.org/10.1016/j.ceramint.2020.02.128

    Article  CAS  Google Scholar 

  18. W.C. Li, Z.J. Wang, Y. Y, J. Yu, J.W. Zheng, L. Qiao, S.L. Che, In-situ formation of Fe3O4 and ZrO2 coated Fe-based soft magnetic composites by hydrothermal method. Ceram. Int. 45, 3864–3870 (2019). https://doi.org/10.1016/j.ceramint.2018.11.058

    Article  CAS  Google Scholar 

  19. S.D. Wu, Y.Q. Dong, X.B. Li, M.J. Gong, R.L. Zhao, W. Gao, H. Wu, A.N. He, J.W. Li, X.M. Wang, X.C. Liu, Microstructure and magnetic properties of FeSiCr soft magnetic powder cores with a MgO insulating layer prepared by the sol–gel method. Ceram. Int. 48, 22278–22286 (2022). https://doi.org/10.1016/j.ceramint.2022.04.227

    Article  CAS  Google Scholar 

  20. B. Meng, J. Hou, F. Ning, B. Yang, B. Zhou, R. Yu, Low-loss and high-induction Fe-based soft magnetic composites coated with magnetic insulating layers. J. Magn. Magn. Mater. 492, 165651 (2019). https://doi.org/10.1016/j.jmmm.2019.165651

    Article  CAS  Google Scholar 

  21. Z. Li, Z.Z. Li, H. Yang, H.X. Li, X.G. Liu, Soft magnetic properties of gas-atomized FeSiAl microparticles with a triple phosphoric acid-sodium silicate–silicone resin insulation treatment. J. Electron. Mater. 51, 2142–2155 (2022). https://doi.org/10.1007/s11664-022-09441-w

    Article  ADS  CAS  Google Scholar 

  22. H.P. Wei, H.Y. Yu, Y. Feng, Y.F. Wang, J.Y. He, Z.W. Liu, High permeability and low core loss nanocrystalline soft magnetic composites based on FeSiBNbCu@ Fe3O4 powders prepared by HNO3 oxidation. Mater. Chem. Phys. 263, 124427 (2021). https://doi.org/10.1016/j.matchemphys.2021.124427

    Article  CAS  Google Scholar 

  23. D. Liu, C. Wu, M. Yan, J. Wang, Correlating the microstructure, growth mechanism and magnetic properties of FeSiAl soft magnetic composites fabricated via HNO3 oxidation. Acta Mater. 146, 294 (2018). https://doi.org/10.1016/j.actamat.2018.01.001

    Article  ADS  CAS  Google Scholar 

  24. E.Y. Kang, Y.H. Chung, M.R. Ok, H.K. Baik, Research on the surface oxidation procedure of Fe-base metallic glass during wet oxidation treatment. Mater. Sci. Eng. A 449, 159–164 (2007). https://doi.org/10.1016/j.msea.2006.02.311

    Article  CAS  Google Scholar 

  25. J.Q. Liu, Y.N. Dong, P. Wang, H. Zhao, J. Pang, X.Y. Li, J.Q. Zhang, Simulation and experiment investigations on fabrication of Fe-based amorphous powders by a novel atomization process equipped with assisted gas nozzles. J. Iron Steel Res. Int. 30, 1142–1155 (2023). https://doi.org/10.1007/s42243-022-00855-8

    Article  CAS  Google Scholar 

  26. B.V. Neamţu, M. Pszola, A. Opriş, F. Popa, T.F. Marinca, I. Chicinaş, Influence of fibres diameter on the AC and DC magnetic characteristics of Fe/Fe3O4 fibres based soft magnetic composites. Ceram. Int. 47, 1865–1874 (2021). https://doi.org/10.1016/j.ceramint.2020.09.015

    Article  CAS  Google Scholar 

  27. H.I. Hsiang, L.F. Fang, K.T. Ho, Minor yttrium nitrate addition effect on FeSiCr alloy powder core electromagnetic properties. J. Magn. Magn. Mater. 444, 1–6 (2017). https://doi.org/10.1016/j.jmmm.2017.07.099

    Article  ADS  CAS  Google Scholar 

  28. H. Zhang, X. Zhu, X.B. Zhang, W. Liu, H.L. Su, Z.Q. Zou, J.Z. Wang, Great reduction in pressure by particle grading for Fe–Si–Al SMCs with good low-frequency magnetic properties. J. Magn. Magn. Mater. 555, 169325 (2022). https://doi.org/10.1016/j.jmmm.2022.169325

    Article  CAS  Google Scholar 

  29. X.W. Yi, Q.B. Li, Y.D. Peng, Y.F. Zhao, S.Z. Zhu, Effect of processing condition on microstructure and properties of FeSiAl powder coated with metal oxides by using a NaOH solution. J. Supercond Novel Magn. 34, 2957 (2021). https://doi.org/10.1007/s10948-021-05977-w

    Article  CAS  Google Scholar 

  30. D. Neena, K.B. Garg, P.A. Alvi, D. Kumar, K.S. Jerath, M. Abu-Samak, S. Dalelaa, Study of band structure properties of pnictide LaO1–xFxFeAs (x = 0, 0.2) superconducting compound. J. Supercond Novel Magn. 27, 1967–1972 (2014). https://doi.org/10.1007/s10948-014-2539-7

    Article  CAS  Google Scholar 

  31. R.M. Mohamed, M.W. Kadi, A.A. Ismail, A facile synthesis of mesoporous α-Fe2O3/TiO2 nanocomposites for hydrogen evolution under visible light. Ceram. Int. 46, 15604–15612 (2020). https://doi.org/10.1016/j.ceramint.2020.03.107

    Article  CAS  Google Scholar 

  32. Y.X. Jia, S.L. Zhu, Z.L. Liu, L. Yang, M.L. Shen, F.H. Wang, Effects of oxygen incorporation in low expansion ni + CrAlYN nanocomposite coatings on the oxidation behavior. Corros. Sci. 167, 108550 (2020). https://doi.org/10.1016/j.corsci.2020.108550

    Article  CAS  Google Scholar 

  33. Z.G. Luo, X.A. Fan, W.T. Hu, F. Luo, J. Wang, Z.Y. Wu, X. Liu, G.Q. Li, Y.W. Li, Formation mechanism and enhanced magnetic properties of Fe–Si/Fe2SiO4 soft magnetic composites transformed from Fe-6.5 wt%Si/α-Fe2O3 core-shell composites. J. Alloys Compd. 817, 152803 (2020). https://doi.org/10.1016/j.jallcom.2019.152803

    Article  CAS  Google Scholar 

  34. Z.L. Zhang, Z.J. Jin, J. Guo, The effect of the interface reaction mode on chemical mechanical polishing. CIRP J. Manufact. Sci. Technol. 31, 539–547 (2020). https://doi.org/10.1016/j.cirpj.2020.08.005

    Article  Google Scholar 

  35. Z.G. Wang, X.T. Zu, X. Xiang, J. Lian, L.M. Wang, Preparation and characterization of polymer/inorganic nanoparticle composites through electron irradiation. J. Mater. Sci. 41, 1973–1978 (2006). https://doi.org/10.1007/s10853-006-1120-6

    Article  Google Scholar 

  36. N. Zhang, T. Bao, Y. Gao, X.L. Xu, S.C. Wang, Growth of MOF@COF on corncob as effective adsorbent for enhancing adsorption of sulfonamides and its mechanism. Appl. Surf. Sci. 580, 152285 (2022). https://doi.org/10.1016/j.apsusc.2021.152285

    Article  CAS  Google Scholar 

  37. X. Yu, H.J. Qi, Z.H. Huang, B. Zhang, S.X. Liu, Preparation and characterization of spherical β-cyclodextrin/urea–formaldehyde microcapsules modified by nano-titanium oxide. RSC Adv. 7, 7857–7863 (2017). https://doi.org/10.1039/C6RA27895G

    Article  ADS  CAS  Google Scholar 

  38. X. Geng, Z.H. Li, Y.L. Hu, H.F. Liu, Y.Q. Sun, H.M. Meng, Y.W. Wang, L.B. Qu, Y.H. Lin, One-pot green synthesis of ultrabright N-Doped fluorescent silicon nanoparticles for cellular imaging by using ethylenediaminetetraacetic acid disodium salt as an effective reductant. ACS Appl. Mater. Interfaces 10, 27979–27986 (2018). https://doi.org/10.1021/acsami.8b09242

    Article  CAS  PubMed  Google Scholar 

  39. A. Jaiswal, S. Pal, A. Kumar, R. Prakash, Metal free triad from red phosphorous, reduced graphene oxide and graphitic carbon nitride (red P-rGO-g-C3N4) as robust electro-catalysts for hydrogen evolution reaction. Electrochim. Acta. 338, 135851 (2020). https://doi.org/10.1016/j.electacta.2020.135851

    Article  CAS  Google Scholar 

  40. Z. Luo, X.A. Fan, W. Hu, F. Luo, G. Li, Y. Li, X. Liu, J. Wang, Controllable SiO2 insulating layer and magnetic properties for intergranular insulating Fe-6.5wt.%Si/SiO2 composites. Adv. Powder Technol. 30, 538–543 (2019). https://doi.org/10.1016/j.apt.2018.12.004

    Article  CAS  Google Scholar 

  41. J.W. Zheng, D.N. Zheng, L. Qiao, Y. Ying, Y.P. Tang, W. Cai, W.C. Li, J. Yu, J. Li, S.L. Che, High permeability and low core loss Fe-based soft magnetic composites with co-ba composite ferrite insulation layer obtained by sol–gel method. J. Alloys Compd. 893, 162107 (2022). https://doi.org/10.1016/j.jallcom.2021.162107

    Article  CAS  Google Scholar 

  42. Y.P. Wang, R.T. Hao, J. Guo, X.M. Li, S.L. Fang, H.M. Liu, S.H. Sun, Effect of mg doping on Cu2ZnSnS4 solar cells prepared by DMF-based solution method. Opt. Mater. 117, 111211 (2021). https://doi.org/10.1016/j.optmat.2021.111211

    Article  CAS  Google Scholar 

  43. H.L. Li, C.X. Fei, D. Yang, C. Tan, Z.Y. Chen, J. Wang, G.X. Wang, H.Y. Fan, H. Yao, C.Y. Wang, H. Chong, Synthesis of carbon nitride quantum dots and biocompatibility evaluation using C. elegans as a model organism. Mater. Today Commun. 25, 101383 (2020). https://doi.org/10.1016/j.mtcomm.2020.101383

    Article  CAS  Google Scholar 

  44. J.M. Cen, P.K. Shen, Y.F. Zeng, Ru doping NiCoP hetero-nanowires with modulated electronic structure for efficient overall water splitting. J. Colloid Interface Sci. 610, 213–220 (2022). https://doi.org/10.1016/j.jcis.2021.12.028

    Article  ADS  CAS  PubMed  Google Scholar 

  45. G.L. Wu, L. Li, M. Sun, Y. Wang, F. Luo, Q.L. Zhang, R. Liu, Z.J. Chen, J.H. Yao, Microstructural evolution and biological properties of PEO coating on SLM-prepared NiTi alloy. Surf. Coat. Technol. 452, 129065 (2023). https://doi.org/10.1016/j.surfcoat.2022.129065

    Article  CAS  Google Scholar 

  46. S. Nakahara, E.A. Périgo, Y. Pittini-Yamada, Y. de Hazan, T. Graule, Electric insulation of a FeSiBC soft magnetic amorphous powder by a wet chemical method: identification of the oxide layer and its thickness control. Acta Mater. 58, 5695–5703 (2010). https://doi.org/10.1016/j.actamat.2010.06.044

    Article  ADS  CAS  Google Scholar 

  47. J.W. Luo, X.T. Liu, M.P. Ma, J.K. Tang, F.R. Huang, Dendritic poly (silylene arylacetylene) resins based on 1, 3, 5-triethynylbenzene. Eur. Polym. J. 129, 109628 (2020). https://doi.org/10.1016/j.eurpolymj.2020.109628

    Article  CAS  Google Scholar 

  48. C. Zhang, W. Zhang, W.H. Yuan, K. Peng, Preparation and magnetic properties of core–shell structured Fe-Si/Fe3O4 composites via in-situ reaction method. J. Magn. Magn. Mater. 531, 167955 (2021). https://doi.org/10.1016/j.jmmm.2021.167955

    Article  CAS  Google Scholar 

  49. J.Q. Liu, Y.N. Dong, Z.Z. Zhu, H. Zhao, J. Pang, P. Wang, J.Q. Zhang, Fe-based amorphous magnetic powder cores with low core loss fabricated by novel gas–water combined atomization powders. Materials 15, 6296 (2022). https://doi.org/10.3390/ma15186296

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. J.Q. Liu, Y.N. Dong, P. Wang, Z.Z. Zhu, J. Pang, X.Y. Li, J.Q. Zhang, Improved high-frequency magnetic properties of FeSiBCCr amorphous soft magnetic composites by adding carbonyl iron powders. J. Non Cryst. Solids. 605, 122166 (2023). https://doi.org/10.1016/j.jnoncrysol.2023.122166

    Article  CAS  Google Scholar 

  51. Q. Chi, L. Chang, Y.Q. Dong, Y.Q. Zhang, B. Zhou, C.Z. Zhang, Y. Pan, Q. Li, J.W. Li, A.N. He, X.M. Wang, Enhanced high frequency properties of FeSiBPC amorphous soft magnetic powder cores with novel insulating layer. Adv. Powder Technol. 32, 1602–1610 (2021). https://doi.org/10.1016/j.apt.2021.03.017

    Article  CAS  Google Scholar 

  52. H.C. Yu, S.X. Zhou, G.Q. Zhang, B.S. Dong, L.B. Meng, Z.Z. Li, Y.Q. Dong, X. Cao, The phosphating effect on the properties of FeSiCr alloy powder. J. Magn. Magn. Mater. 552, 168741–168748 (2022). https://doi.org/10.1016/j.jmmm.2021.168741

    Article  CAS  Google Scholar 

  53. T. Li, Y.Q. Dong, L. Liu, M. Liu, X.Z. Shi, X. Dong, Q.Y. Rong, Novel Fe-based nanocrystalline powder cores with high performance prepared by using industrial materials. Intermetallics. 102, 101–105 (2018). https://doi.org/10.1016/j.intermet.2018.09.001

    Article  CAS  Google Scholar 

  54. Y. Zhang, P. Sharma, A. Makino, Production and properties of soft magnetic cores made from Fe-Rich FeSiBPCu powders. IEEE Trans. Magn. 51, 1–4 (2015). https://doi.org/10.1109/TMAG.2014.2359003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Y. Zhang, P. Sharma, A. Makino, Fe-rich Fe–Si–B–P–Cu powder cores for high-frequency power electronic applications. IEEE Trans. Magn. 50, 1–4 (2014). https://doi.org/10.1109/TMAG.2014.2316543

    Article  ADS  CAS  Google Scholar 

  56. W.W. Guan, X.Y. Shi, T.T. Xu, K. Wan, B.W. Zhang, W. Liu, H.L. Su, Z.Q. Zou, Y.W. Du, Synthesis of well-insulated Fe–Si–Al soft magnetic composites via a silane-assisted organic/inorganic composites coating route. J. Phys. Chem. Solids 150:109841 ((2021)(2021)

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by Key R&D Program of Shandong Province, China (Grant No. 2022CXGC020308).

Author information

Authors and Affiliations

Authors

Contributions

PW: Conceptualization, Data curation, Formal analysis, Investigation, Writing—original draft. JL: Investigation, Methodology, Writing—review & editing. ZZ: Project administration. JP: Supervision, Funding acquisition. JZ: Resources, Writing—review & editing.

Corresponding authors

Correspondence to Pu Wang or Jiaquan Q. Zhang.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1002.2 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Liu, J., Zhu, Z. et al. Sodium silicate coatings for improving soft magnetic properties of FeSiAl powder cores with industrial compatibility. J Mater Sci: Mater Electron 35, 425 (2024). https://doi.org/10.1007/s10854-024-12212-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12212-4

Navigation