Skip to main content
Log in

Effect of back contact surface nitriding on the growth of Cu2ZnSnSe4 and solar cells performances

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Interfacial performance optimization is one of the significant means to improve the efficiency of Cu2ZnSnSe4 (CZTSe) solar cells. Here, nitridation treatment was applied to the molybdenum back contact surface by plasma-assisted molecular beam epitaxy (PA-MBE), and provide a feasible method for compound optimization of back contact and a novel understanding of the CZTSe growth mechanism. It is found that the nitridation changes the CZTSe growth process and regulates the elemental distribution. A MoNx layer forms on the back contact surface, which inhibits the decomposition reaction of the bottom absorber layer with molybdenum and reduces the generation of over thick MoSe2. This interlayer also improves carrier transport efficiency by forming quasi-ohmic contact and provides a hole-selective transportation to reduce interfacial carrier recombination, due to its high work function. Finally, the efficiency of CZTSe solar cell is improved by 32% from 4.93% to 6.51% accompanied with the increase of VOC, JSC, and FF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. D.B. Mitzi, O. Gunawan, T.K. Todorov, K. Wang, S. Guha, The path towards a high-performance solution-processed kesterite solar cell. Solar Energy Mater. Solar Cells 95, 1421 (2011). https://doi.org/10.1016/j.solmat.2010.11.028

    Article  CAS  Google Scholar 

  2. S. Siebentritt, Why are kesterite solar cells not 20% efficient? Thin Solid Films 535, 1 (2013). https://doi.org/10.1016/j.tsf.2012.12.089

    Article  ADS  CAS  Google Scholar 

  3. YS Lee, T Gershon, O Gunawan, et al. (2015) Cu2ZnSnSe4 thin-film solar cells by thermal Co-evaporation with 11.6% efficiency and improved minority carrier diffusion length. Adv. Energy Mater. 5, 1401372.https://doi.org/10.1002/aenm.201401372

  4. Y. Gong, Q. Zhu, B. Li et al., Elemental de-mixing-induced epitaxial kesterite/CdS interface enabling 13%-efficiency kesterite solar cells. Nature Energy 7, 966 (2022). https://doi.org/10.1038/s41560-022-01132-4

    Article  ADS  CAS  Google Scholar 

  5. J Li, Y Huang, J Huang, et al. (2020) Defect control for 12.5% efficiency Cu(2)ZnSnSe(4) kesterite thin-film solar cells by engineering of local chemical environment. Adv. Mater. 32, 2005268. https://doi.org/10.1002/adma.202005268

  6. K Kaur Nisika, M. Kumar, Progress and prospects of CZTSSe/CdS interface engineering to combat high open-circuit voltage deficit of kesterite photovoltaics: a critical review. J. Mater. Chem. A 8, 21547 (2020). https://doi.org/10.1039/d0ta06450e

    Article  CAS  Google Scholar 

  7. MG Gang, SW Shin, MP Suryawanshi, et al. (2018) Band tail engineering in kesterite Cu(2)ZnSn(S,Se)(4) thin-film solar cells with 11.8% efficiency. J. Phys. Chem. Lett. 9, 4555. https://doi.org/10.1021/acs.jpclett.8b01433

  8. G. Altamura, L. Grenet, C. Roger et al., Alternative back contacts in kesterite Cu2ZnSn(S1-xSex)4 thin film solar cells. J. Renew. Sustain. Energy 6, 011401 (2014). https://doi.org/10.1063/1.4831781

    Article  CAS  Google Scholar 

  9. J.A. Spies, R. Schafer, J.F. Wager et al., Pin double-heterojunction thin-film solar cell p-layer assessment. Solar Energy Mater. Solar Cells 93, 1296 (2009). https://doi.org/10.1016/j.solmat.2009.01.024

    Article  CAS  Google Scholar 

  10. X. Zhang, M. Kobayashi, A. Yamada, Comparison of Ag(In, Ga)Se(2)/Mo and Cu(In, Ga)Se(2)/Mo interfaces in solar cells. ACS Appl. Mater. Interfaces 9, 16215 (2017). https://doi.org/10.1021/acsami.7b02548

    Article  CAS  PubMed  Google Scholar 

  11. V. Karade, A. Lokhande, P. Babar et al., Insights into kesterite’s back contact interface: A status review. Solar Energy Mater. Solar Cells 200, 109911 (2019). https://doi.org/10.1016/j.solmat.2019.04.033

    Article  CAS  Google Scholar 

  12. J. Li, Y. Zhang, W. Zhao et al., A temporary barrier effect of the alloy layer during selenization: tailoring the thickness of MoSe2 for efficient Cu2ZnSnSe4 solar cells. Adv. Energy Mater. 5, 1402178 (2015). https://doi.org/10.1002/aenm.201402178

    Article  CAS  Google Scholar 

  13. J.J. Scragg, T. Kubart, J.T. Wätjen, T. Ericson, M.K. Linnarsson, C. Platzer-Björkman, Effects of back contact instability on Cu2ZnSnS4 devices and processes. Chem. Mater.25, 3162 (2013). https://doi.org/10.1021/cm4015223

    Article  CAS  Google Scholar 

  14. B Shin, Y Zhu, NA Bojarczuk, S Jay Chey, S Guha (2012) Control of an interfacial MoSe2 layer in Cu2ZnSnSe4 thin film solar cells: 8.9% power conversion efficiency with a TiN diffusion barrier. Appl. Phys. Lett. 101, 053903. https://doi.org/10.1063/1.4740276

  15. T. Schnabel, E. Ahlswede, On the interface between kesterite absorber and Mo back contact and its impact on solution-processed thin-film solar cells. Solar Energy Materials and Solar Cells 159, 290 (2017). https://doi.org/10.1016/j.solmat.2016.09.029

    Article  CAS  Google Scholar 

  16. W. Chen, T. Taskesen, D. Nowak et al., Modifications of the CZTSe/Mo back-contact interface by plasma treatments. RSC Adv 9, 26850 (2019). https://doi.org/10.1039/c9ra02847a

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. F. Liu, K. Sun, W. Li et al., Enhancing the Cu2ZnSnS4 solar cell efficiency by back contact modification: Inserting a thin TiB2 intermediate layer at Cu2ZnSnS4/Mo interface. Appl. Phys. Lett. 104, 051105 (2014). https://doi.org/10.1063/1.4863736

    Article  ADS  CAS  Google Scholar 

  18. S. López-Marino, M. Placidi, A. Pérez-Tomás et al., Inhibiting the absorber/Mo-back contact decomposition reaction in Cu2ZnSnSe4 solar cells: the role of a ZnO intermediate nanolayer. J. Mater. Chem. A 1, 8338 (2013). https://doi.org/10.1039/c3ta11419h

    Article  CAS  Google Scholar 

  19. B.S. Sengar, V. Garg, G. Siddharth et al., Improving the Cu2ZnSn(S, Se)4-based photovoltaic conversion efficiency by back-contact modification. IEEE Trans. on Electron Devices 68, 2748 (2021). https://doi.org/10.1109/ted.2021.3071105

    Article  ADS  CAS  Google Scholar 

  20. A. Zhang, Z. Zhou, W. Zhou et al., Chemical dynamics of back contact with MoO3 interfacial layer in kesterite solar cells: microstructure evolution and photovoltaic performance. Solar RRL 3, 1900131 (2019). https://doi.org/10.1002/solr.201900131

    Article  CAS  Google Scholar 

  21. P.D. Antunez, D.M. Bishop, Y.S. Lee et al., Back contact engineering for increased performance in kesterite solar cells. Advanced Energy Materials 7, 1602585 (2017). https://doi.org/10.1002/aenm.201602585

    Article  CAS  Google Scholar 

  22. A. Duchatelet, G. Savidand, R.N. Vannier, D. Lincot, Optimization of MoSe2 formation for Cu(In, Ga)Se2-based solar cells by using thin superficial molybdenum oxide barrier layers. Thin Solid Films 545, 94 (2013). https://doi.org/10.1016/j.tsf.2013.07.038

    Article  ADS  CAS  Google Scholar 

  23. J-y Kang, GY Baek, S Gedi, YJ Song, C-W Jeon (2018) Effects of the MoN diffusion barrier on the CZTSe growth behavior and solar cell performance. J. Alloys Compds.https://doi.org/10.1016/j.jallcom.2018.03.134

  24. C.-W. Jeon, T. Cheon, H. Kim, M.-S. Kwon, S.-H. Kim, Controlled formation of MoSe2 by MoN thin film as a diffusion barrier against Se during selenization annealing for CIGS solar cell. J. Alloys Compds. 644, 317 (2015). https://doi.org/10.1016/j.jallcom.2015.04.120

    Article  CAS  Google Scholar 

  25. S Uličná, P Arnou, A Abbas, et al. (2019) Deposition and application of a Mo–N back contact diffusion barrier yielding a 12.0% efficiency solution-processed CIGS solar cell using an amine–thiol solvent system. J. Mater. Chem. A 7: 7042. https://doi.org/10.1039/c8ta12089g

  26. L. Zeng, C. Zeng, Y. Liang, Y. Yuan, G. Yan, R. Hong, Significant passivation effect of Cu(In, Ga)Se2 solar cells via back contact surface modification using oxygen plasma. Solar RRL 5, 2000572 (2021). https://doi.org/10.1002/solr.202000572

    Article  CAS  Google Scholar 

  27. Y. Liang, C. Zeng, L. Zeng et al., Effect of self-seed inducing on the growth mechanism and photovoltaic performance of Cu2ZnSnSe4 thin films. Solar RRL 6, 2101047 (2022). https://doi.org/10.1002/solr.202101047

    Article  CAS  Google Scholar 

  28. Y.E. Romanyuk, S.G. Haass, S. Giraldo et al., Doping and alloying of kesterites. Journal of Physics: Energy 1, 044004 (2019). https://doi.org/10.1088/2515-7655/ab23bc

    Article  ADS  CAS  Google Scholar 

  29. S. Chen, A. Walsh, X.G. Gong, S.H. Wei, Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Adv Mater 25, 1522 (2013). https://doi.org/10.1002/adma.201203146

    Article  CAS  PubMed  Google Scholar 

  30. A. Redinger, M. Mousel, R. Djemour, L. Gütay, N. Valle, S. Siebentritt, Cu2ZnSnSe4thin film solar cells produced via co-evaporation and annealing including a SnSe2 capping layer. Prog. Photovoltaics: Res. Appl. 22, 51 (2014). https://doi.org/10.1002/pip.2324

    Article  CAS  Google Scholar 

  31. G. Rey, A. Redinger, J. Sendler et al., The band gap of Cu2ZnSnSe4: Effect of order-disorder. Appl. Phys. Lett. 105, 112106 (2014). https://doi.org/10.1063/1.4896315

    Article  ADS  CAS  Google Scholar 

  32. V.C. Karade, M.P. Suryawanshi, J.S. Jang et al., Understanding defects and band tailing characteristics and their impact on the device performance of Cu2ZnSn(S, Se)4 solar cells. J. Mater. Chem. A 10, 8466 (2022). https://doi.org/10.1039/d2ta00165a

    Article  CAS  Google Scholar 

  33. M. Ganchev, J. Iljina, L. Kaupmees et al., Phase composition of selenized Cu2ZnSnSe4 thin films determined by X-ray diffraction and Raman spectroscopy. Thin Solid Films 519, 7394 (2011). https://doi.org/10.1016/j.tsf.2011.01.388

    Article  ADS  CAS  Google Scholar 

  34. T. Gürel, C. Sevik, T. Çağın, Characterization of vibrational and mechanical properties of quaternary compounds Cu2ZnSnS4and Cu2ZnSnSe4in kesterite and stannite structures. Phys. Rev. B 84, 205201 (2011). https://doi.org/10.1103/PhysRevB.84.205201

    Article  ADS  CAS  Google Scholar 

  35. M. Ganchev, L. Kaupmees, J. Iliyna et al., Formation of Cu2ZnSnSe4 thin films by selenization of electrodeposited stacked binary alloy layers. Energy Procedia 2, 65 (2010). https://doi.org/10.1016/j.egypro.2010.07.012

    Article  CAS  Google Scholar 

  36. H. Yoo, R.A. Wibowo, A. Hölzing et al., Investigation of the solid state reactions by time-resolved X-ray diffraction while crystallizing kesterite Cu2ZnSnSe4 thin films. Thin Solid Films 535, 73 (2013). https://doi.org/10.1016/j.tsf.2013.01.054

    Article  ADS  CAS  Google Scholar 

  37. V. Izquierdo-Roca, E. Saucedo, C.M. Ruiz et al., Raman scattering and structural analysis of electrodeposited CuInSe2 and S-rich quaternary CuIn(S, Se)2 semiconductors for solar cells. Phys. Status Solidi (a) 206, 1001 (2009). https://doi.org/10.1002/pssa.200881239

    Article  ADS  CAS  Google Scholar 

  38. P.M.P. Salomé, J. Malaquias, P.A. Fernandes et al., Growth and characterization of Cu2ZnSn(S, Se)4 thin films for solar cells. Solar Energy Mater. Solar Cells 101, 147 (2012). https://doi.org/10.1016/j.solmat.2012.02.031

    Article  CAS  Google Scholar 

  39. A. Redinger, K. Hönes, X. Fontané et al., Detection of a ZnSe secondary phase in coevaporated Cu2ZnSnSe4 thin films. Appl. Phys. Lett. 98, 101907 (2011). https://doi.org/10.1063/1.3558706

    Article  ADS  CAS  Google Scholar 

  40. M.T. Greiner, L. Chai, M.G. Helander, W.-M. Tang, Z.-H. Lu, Transition metal oxide work functions: the influence of cation oxidation state and oxygen vacancies. Adv. Funct. Mater. 22, 4557 (2012). https://doi.org/10.1002/adfm.201200615

    Article  CAS  Google Scholar 

  41. S.-Y. Lin, Y.-S. Lai, Effect of nitrogen on the physical properties and work function of MoNx cap layers on HfO2 gate dielectrics. ECS J. Solid State Sci. Technol. 3, N161 (2014). https://doi.org/10.1149/2.0111412jss

    Article  CAS  Google Scholar 

  42. A. Kindvall, J. Kephart, W. Sampath, 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC) (IEEE, Washington, 2017)

    Google Scholar 

  43. C Battaglia, SM de Nicolás, S De Wolf, et al. (2014) Silicon heterojunction solar cell with passivated hole selective MoOx contact. Appl. Phys. Lett. https://doi.org/10.1063/1.4868880

  44. Y. Li, Y. Li, J.E. Heger et al., Revealing surface and interface evolution of Molybdenum Nitride as carrier-selective contacts for Crystalline Silicon solar cells. ACS Appl. Mater. Interfaces 15, 13753 (2023). https://doi.org/10.1021/acsami.2c22781

    Article  CAS  PubMed  Google Scholar 

  45. J. Park, M. Lee, V. Karade et al., Suppression of defects through cation substitution: a strategic approach to improve the performance of kesterite Cu2ZnSn(S, Se)4 solar cells under indoor light conditions. Solar RRL 5, 2100020 (2021). https://doi.org/10.1002/solr.202100020

    Article  CAS  Google Scholar 

  46. I. Irfan, A. James Turinske, Z. Bao, Y. Gao, Work function recovery of air exposed molybdenum oxide thin films. App. Phys. Lett. 101, 093305 (2012). https://doi.org/10.1063/1.4748978

    Article  ADS  CAS  Google Scholar 

  47. H.B. Michaelson, The work function of the elements and its periodicity. J. Appl. Phys. 48, 4729 (1977). https://doi.org/10.1063/1.323539

    Article  ADS  CAS  Google Scholar 

  48. J.R. Sites, P.H. Mauk, Diode quality factor determination for thin-film solar cells. Solar Cells 27, 411 (1989). https://doi.org/10.1016/0379-6787(89)90050-1

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by Guangdong Basic and Applied Basic Research Foundation (grant no. 2021A1515010626) and National Natural Science Foundation of China (grant no. 62374187).

Author information

Authors and Affiliations

Authors

Contributions

Ruixi Lin: Investigation, Writing—original draft. Yunfeng Liang: Investigation, Supervision. Dongying Li: Validation, Visualization. Mingyu Yuan: Investigation. Wanjie Xin: Investigation. Hai Zhu: Resources. Chunhong Zeng: Conceptualization, Writing—review & editing. Ruijiang Hong: Resources, Supervision, Project administration.

Corresponding authors

Correspondence to Chunhong Zeng or Ruijiang Hong.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 43275 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, R., Liang, Y., Li, D. et al. Effect of back contact surface nitriding on the growth of Cu2ZnSnSe4 and solar cells performances. J Mater Sci: Mater Electron 35, 412 (2024). https://doi.org/10.1007/s10854-024-12192-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12192-5

Navigation