Skip to main content
Log in

Flower ball MoS2 embedded in sheet-like Sm2WO6 to construct p–n heterojunction for photocatalytic hydrogen evolution

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Photocatalytic hydrogen production is one of the effective ways of global energy conservation and emission reduction. Herein, we report the successful embedding of flower ball MoS2 into Sm2WO6 using the hydrothermal method, and p-n heterojunction is obtained successfully. Due to the narrow band gap of MoS2, the Sm2WO6/ MoS2 composite photocatalyst effectively improves the photogenerated carrier separation. The better redox capacity of Sm2WO6 itself also promotes the reduction capacity of Sm2WO6/MoS2. The petals on MoS2 are closely bound to Sm2WO6, which enhances the electron transport efficiency and is one of the main factors for improving photocatalytic hydrogen evolution (HER). To explore the performance of Sm2WO6/ MoS2 by various means of representation. And the HER performance of Sm2WO6/ MoS2 is evaluated using eosin Y (EY) as sensitizer and TEOA as sacrifice agent. Compared with pure Sm2WO6, Sm2WO6/ MoS2 has improved HER performance, and its optimal activity is 142.7 µmol, which is nearly 140 times that of pure Sm2WO6. This study demonstrates a novel morphology design strategy for composite photocatalysts to promote efficient photocatalytic hydrogen production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. J. Di, C. Yan, A.D. Handoko, Z.W. Seh, H. Li, Z. Liu, Ultrathin two-dimensional materials for photo- and electrocatalytic hydrogen evolution. Mater. Today. 21(7), 749–770 (2018)

    CAS  Google Scholar 

  2. N. Fajrina, M. Tahir, A critical review in strategies to improve photocatalytic water splitting towards hydrogen production. Int. J. Hydrog. Energy. 44(2), 540–577 (2019)

    CAS  Google Scholar 

  3. T. Hisatomi, K. Domen, Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat. Catal. 2(5), 387–399 (2019)

    CAS  Google Scholar 

  4. J. Kosco, M. Bidwell, H. Cha, T. Martin, C.T. Howells, M. Sachs, D.H. Anjum, S. Gonzalez Lopez, L. Zou, A. Wadsworth, W. Zhang, L. Zhang, J. Tellam, R. Sougrat, F. Laquai, D.M. DeLongchamp, J.R. Durrant, I. McCulloch, Enhanced photocatalytic hydrogen evolution from organic semiconductor heterojunction nanoparticles. Nat. Mater. 19(5), 559–565 (2020)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. T. Takata, J. Jiang, Y. Sakata, M. Nakabayashi, N. Shibata, V. Nandal, K. Seki, T. Hisatomi, K. Domen, Photocatalytic water splitting with a quantum efficiency of almost unity. Nature. 581(7809), 411–414 (2020)

    ADS  CAS  PubMed  Google Scholar 

  6. M. Arunpandian, K. Selvakumar, A. Raja, P. Rajasekaran, C. Ramalingan, E..R. Nagarajan, S. Arunachalam, Rational design of novel ternary Sm2WO6/ZnO/GO nanocomposites: An affordable photocatalyst for the mitigation of carcinogenic organic pollutants. Colloids Surf. A: Physicochem. Eng. Aspects 596, 124721 (2020)

    CAS  Google Scholar 

  7. F. Wang, W. Li, S. Gu, H. Li, X. Wu, X. Liu, Samarium and Nitrogen Co-doped Bi2WO6 Photocatalysts: synergistic effect of sm(3+) /Sm(2+) Redox Centers and N-Doped Level for enhancing visible-light photocatalytic activity. Chemistry. 22(36), 12859–12867 (2016)

    CAS  PubMed  Google Scholar 

  8. Y.-H. Li, J.-F. Huang, J.-Y. Li, L.-Y. Cao, J. Lu, J.-P. Wu, A hydrothermal assisted method to prepare Samarium Tungstate sheets at lowered reaction temperature. Mater. Lett. 135, 168–171 (2014)

    CAS  Google Scholar 

  9. P. Kumar, P. Chand, Sm3+-BiFeO3 nano catalyst: A synergetic effect of Sm3+ on enhanced multiferroic properties and photocatalysis. J. Alloys Compd. 891, 161896 (2022)

    CAS  Google Scholar 

  10. S.M. Pourmortazavi, M. Rahimi-Nasrabadi, M. Aghazadeh, M.R. Ganjali, M.S. Karimi, P. Norouzi, Synthesis of Sm2(WO4)3 nanocrystals via a statistically optimized route and their photocatalytic behavior. Mater. Res. Express 4(3), 035012 (2017)

    ADS  Google Scholar 

  11. S.L. Prabavathi, K. Saravanakumar, C.M. Park, V. Muthuraj, Photocatalytic degradation of levofloxacin by a novel Sm6WO12/g-C3N4heterojunction: Performance, mechanism and degradation pathways (Separation and Purification Technology, 2020)

  12. T. Wu, J. Li, M. Chang, Y. Song, Q. Sun, F. Wang, H. Zou, Z. Shi, Photoluminescence properties and photocatalytic activities of SiO2@TiO2:Sm3+nanomaterials (Journal of Physics and Chemistry of Solids, 2021)

  13. H. Okumura, K. Adachi, E. Yamasue, K.N. Ishihara, New LnOCl (Ln = Sm, Nd) photocatalyst and novel cocatalytic effect on BiOCl in humid environment. Chem. Commun. 53(63), 8854–8857 (2017)

    CAS  Google Scholar 

  14. H. Yu, J. Xu, H. Guo, Y. Li, Z. Liu, Z. Jin, Synergistic effect of rare earth metal Sm oxides and Co1 – xS on sheet structure MoS2 for photocatalytic hydrogen evolution. RSC Adv. 7(8), 56417–56425 (2017)

    ADS  CAS  Google Scholar 

  15. J. Zeng, Z. Li, H. Peng, X. Zheng, Core-shell Sm2O3@ZnO nano-heterostructure for the visible light driven photocatalytic performance. Colloids Surf. A: Physicochem. Eng. Aspects 560, 244–251 (2019)

    CAS  Google Scholar 

  16. Z. Liu, J. Xu, Q. Liao, Y. Li, L. Li, M. Mao, Synthesis of Sm2MoO6/Ni(OH)2 by simple impregnation method: photocatalyst for non-precious metal and efficient hydrogen production. Catal. Lett. 150, 39–48 (2019)

    Google Scholar 

  17. W. Dan, H. Jianfeng, Y. Lixiong, O. Haibo, L. Jiayin, W. Jianpeng, Facile synthesis and enhanced photocatalytic activity of Sm(OH)3nanorods† (RSC Advances, 2014)

  18. X. Cheng, L. Wang, L. Xie, C. Sun, W. Zhao, X. Liu, Z. Zhuang, S. Liu, Q. Zhao, Defect-driven selective oxidation of MoS2 nanosheets with photothermal effect for Photo-Catalytic hydrogen evolution reaction. Chem. Eng. J. 439, 135757 (2022)

    CAS  Google Scholar 

  19. X. Liu, J. Xu, L. Ma, Y. Liu, L. Hu, Nano-flower S-scheme heterojunction NiAl-LDH/MoS2 for enhancing photocatalytic hydrogen production. New J. Chem. 46(1), 228–238 (2022)

    Google Scholar 

  20. L. Ma, J. Xu, Z. Liu, Y. Liu, X. Liu, S. Xu, Fe2O3 hexagonal nanosheets assembled with NiS formed p–n heterojunction for efficient photocatalytic hydrogen evolution. J. Mater. Sci. 57(12), 6734–6748 (2022)

    ADS  CAS  Google Scholar 

  21. J. Hu, L. Wang, P. Zhang, C. Liang, G. Shao, Construction of solid-state Z-scheme carbon-modified TiO2/WO3 nanofibers with enhanced photocatalytic hydrogen production. J. Power Sources. 328, 28–36 (2016)

    ADS  CAS  Google Scholar 

  22. M.B. Tahir, G. Nabi, T. Iqbal, M. Sagir, M. Rafique, Role of MoSe2 on nanostructures WO3-CNT performance for photocatalytic hydrogen evolution. Ceram. Int. 44(6), 6686–6690 (2018)

    CAS  Google Scholar 

  23. L. Zhang, T. Mi, M.A. Ziaee, L. Liang, R. Wang, Hollow POM@MOF hybrid-derived porous Co3O4/CoMoO4 nanocages for enhanced electrocatalytic water oxidation. J. Mater. Chem. A 6(4), 1639–1647 (2018)

    CAS  Google Scholar 

  24. Z. Li, J. Xu, Z. Liu, X. Liu, S. Xu, Y. Ma, 2D NiCo2S4 decorated on ZnIn2S4 formed S-scheme heterojunction for photocatalytic hydrogen production. Int. J. Hydrog. Energy. 48(9), 3466–3477 (2023)

    CAS  Google Scholar 

  25. J. Li, M. Li, Y. Li, X. Guo, Z. Jin, Lotus-leaf-like Bi2O2CO3 nanosheet combined with Mo2S3 for higher photocatalytic hydrogen evolution. Sep. Purif. Technol. 288, 120588 (2022)

    CAS  Google Scholar 

  26. T. Qiu, L. Wang, B. Zhou, Y. Zhu, C. Zhuang, Q. Liu, Q. Shen, Y. Xiong, Y. Zhou, Z. Zou, Molybdenum Sulfide Quantum dots decorated on TiO2 for Photocatalytic Hydrogen Evolution. ACS Appl. Nano Mater. 5(1), 702–709 (2021)

    Google Scholar 

  27. S.K. Ghosh, V.K. Perla, S. Zhang, K. Mallick, The dielectric and charge-discharge performance study of carbon nitride supported bismuth sulfide nanoparticles. Chem. Phys. Lett. 733, 136674 (2019)

    CAS  Google Scholar 

  28. T. Ni, Z. Yang, Y. Cao, H. Lv, Y. Liu, Rational design of MoS2/g-C3N4/ZnIn2S4 hierarchical heterostructures with efficient charge transfer for significantly enhanced Photocatalytic H2 production. Ceram. Int. 47(16), 22985–22993 (2021)

    CAS  Google Scholar 

  29. W. Gu, Y. Yan, C. Zhang, C. Ding, Y. Xian, One-step synthesis of Water-Soluble MoS2 Quantum dots via a Hydrothermal Method as a fluorescent probe for hyaluronidase detection. ACS Appl. Mater. Interfaces. 8(18), 11272–11279 (2016)

    CAS  PubMed  Google Scholar 

  30. L. Lei, D. Huang, C. Lai, C. Zhang, R. Deng, Y. Chen, S. Chen, W. Wang, Interface modulation of Mo2C@foam nickel via MoS2 quantum dots for the electrochemical oxygen evolution reaction. J. Mater. Chem. A 8(30), 15074–15085 (2020)

    CAS  Google Scholar 

  31. S. Li, C. Wang, M. Cai, F. Yang, Y. Liu, J. Chen, P. Zhang, X. Li, X. Chen, Facile fabrication of TaON/Bi2MoO6 core–shell S-scheme heterojunction nanofibers for boosting visible-light catalytic levofloxacin degradation and Cr(VI) reduction. Chem. Eng. J. 428, 131158 (2022)

    CAS  Google Scholar 

  32. R. Zhang, K. Gong, F. Du, S. Cao, Highly efficient thiomolybdate [Mo2S12]2 nanocluster cocatalyst decorated on TiO2 to boost photocatalytic hydrogen evolution. Int. J. Hydrog. Energy. 47(45), 19570–19579 (2022)

    CAS  Google Scholar 

  33. Z. Yang, M. Li, S. Chen, S. Yang, F. Peng, J. Liao, Y. Fang, S. Zhang, S. Zhang, Cocatalyst Engineering with Robust Tunable Carbon-Encapsulated Mo‐Rich Mo/Mo2C heterostructure nanoparticle for efficient photocatalytic hydrogen evolution. Adv. Funct. Mater. 33, 14 (2023)

    Google Scholar 

  34. Y. Lei, K.H. Ng, Y. Zhu, Y. Zhang, Z. Li, S. Xu, J. Huang, J. Hu, Z. Chen, W. Cai, Y. Lai, Mo-activated VC as effective cocatalyst for an enhanced photocatalytic hydrogen evolution activity of CdS. Chem. Eng. J. 452, 139325 (2023)

    CAS  Google Scholar 

  35. G. Wang, Y. Quan, X. Hao, X. Guo, Z. Jin, Strong redox-capable graphdiyne-based double S-scheme heterojunction 10%GC/Mo for enhanced photocatalytic hydrogen evolution. J. Environ. Chem. Eng. 11(1), 109119 (2023)

    CAS  Google Scholar 

  36. M. Chen, X. Zhou, J. Luo, X. Zhou, Y. Ge, Boosting photocatalytic hydrogen evolution of g-C3N4 via enhancing its interfacial redox activity and charge separation with Mo-doped CoSx. Int. J. Hydrog. Energy. 47(84), 35723–35736 (2022)

    CAS  Google Scholar 

  37. X.-Q. Qiao, Z. Wang, C. Li, H. Zhang, D. Hou, Y.-Q. Lan, D.-S. Li, A new, efficient and durable MoO2/Mo2C-C cocatalyst with the optimized composition and electronic structure via in-situ carburization for photocatalytic H2 evolution. Chem. Eng. J. 455, 140791 (2023)

    CAS  Google Scholar 

  38. Y. Wang, Y. Zhang, S. Zhao, Z. Huang, W. Chen, Y. Zhou, X. Lv, S. Yuan, Bio-template synthesis of Mo-doped polymer carbon nitride for photocatalytic hydrogen evolution. Appl. Catal. B 248, 44–53 (2019)

    CAS  Google Scholar 

  39. F. Xing, H. Yu, C. Cheng, Q. Liu, L. Lai, S. Xia, C. Huang, Interfacial microenvironment-regulated cascade charge transport in Co6Mo6C2-MoO2-CoNC@ZnIn2S4 photocatalyst for efficient hydrogen evolution. Chem. Eng. J. 450, 138130 (2022)

    CAS  Google Scholar 

  40. G. Liu, G. Zhao, W. Zhou, Y. Liu, H. Pang, H. Zhang, D. Hao, X. Meng, P. Li, T. Kako, J. Ye, In situ Bond Modulation of Graphitic Carbon Nitride to construct p-n homojunctions for enhanced photocatalytic hydrogen production. Adv. Funct. Mater. 26(37), 6822–6829 (2016)

    CAS  Google Scholar 

  41. Y. Ding, J. Zhang, Y. Yang, L. Long, L. Yang, L. Yan, W. Kong, F. Liu, F. Lv, J. Liu, Fully-depleted dual P–N heterojunction with type-II band alignment and matched build-in electric field for high-efficient photocatalytic hydrogen production. Int. J. Hydrog. Energy. 46(73), 36069–36079 (2021)

    CAS  Google Scholar 

  42. R. Shen, X. Lu, Q. Zheng, Q. Chen, Y.H. Ng, P. Zhang, X. Li, Tracking S-Scheme charge transfer pathways in Mo2C/CdS H2‐Evolution Photocatalysts. Solar RRL. 5, 7 (2021)

    ADS  Google Scholar 

  43. S. Geng, F. Tian, M. Li, Y. Liu, J. Sheng, W. Yang, Y. Yu, Y. Hou, Activating interfacial S sites of MoS2 boosts hydrogen evolution electrocatalysis. Nano Res. 15(3), 1809–1816 (2021)

    ADS  Google Scholar 

  44. Y. Zhang, Y. Kuwahara, K. Mori, H. Yamashita, Defect Engineering of MoS(2) and its impacts on Electrocatalytic and Photocatalytic Behavior in Hydrogen evolution reactions. Chem. Asian J. 14(2), 278–285 (2019)

    CAS  PubMed  Google Scholar 

  45. X. Liu, Y. Hou, M. Tang, L. Wang, Atom elimination strategy for MoS2 nanosheets to enhance photocatalytic hydrogen evolution. Chin. Chem. Lett. 34(3), 107489 (2023)

    CAS  Google Scholar 

  46. S. Yan, X. Jing, M. Yue, L. Zezhong, L. Qian, Coupling of Sm2WO6 and ZIF-67 to form S–scheme heterojunction to improve the performance of photocatalytic hydrogen production. Int. J. Hydrog. Energy 51, 945–956 (2023)

    Google Scholar 

  47. Z. Li, J. Xu, Z. Liu, X. Liu, S. Xu, Y. Ma, Q. Li, Y. Shang, Construction of p-n Heterojunctions by Co9S8 Modified Rare-Earth Metal Sm-Tungstates for Photocatalytic Hydrogen Evolution. Catal. Lett. (2023). https://doi.org/10.1007/s10562-023-04397-w

    Article  Google Scholar 

  48. L. Sima, D. Li, L. Dong, F. Zhang, Facile preparation of porous g-C3N4/MoS2 heterojunction for hydrogen production under simulated sunlight. Mater. Today Sustain. 20, 100217 (2022)

    Google Scholar 

  49. J. Qiu, W. Zheng, R. Yuan, C. Yue, D. Li, F. Liu, J. Zhu, A novel 3D nanofibrous aerogel-based MoS2@Co3S4 heterojunction photocatalyst for water remediation and hydrogen evolution under simulated solar irradiation. Appl. Catal. B-Environmental 264, 118514 (2020)

    Google Scholar 

  50. S. Guo, L. Yang, Y. Zhang, Z. Huang, X. Ren, W.E.I. Sha, X. Li, Enhanced hydrogen evolution via interlaced Ni3S2/MoS2 heterojunction photocatalysts with efficient interfacial contact and broadband absorption. J. Alloys Compd. 749, 473–480 (2018)

    CAS  Google Scholar 

  51. R. Zhang, Y. Li, J. Qi, D. Gao, Ferromagnetism in ultrathin MoS2 nanosheets: from amorphous to crystalline. Nanoscale Res. Lett. 9, 1–5 (2014)

    ADS  Google Scholar 

  52. D. Wang, Y. Xie, Z. Wu, Amorphous phosphorus-doped MoS2 catalyst for efficient hydrogen evolution reaction. Nanotechnology. 30, 20 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Central Universities of North University for Nationalities (2021KJCX02) and also was supported by the Natural Science Foundation of Ningxia Province (2021AAC03180).

Funding

This work was supported by Central Universities of North University for Nationalities (Grant number: 2021KJCX02) and also was supported by the Natural Science Foundation of Ningxia Province (Grant number: 2021AAC03180).

Author information

Authors and Affiliations

Authors

Contributions

ZL: Conceptualization, methodology, data curation, supervision, visualization, writing—original draft. JX: Conceptualization, methodology, supervision, resources, funding acquisition, Writing—Review & Editing. YM: Investigation, visualization. YM: Investigation, resources. ZL: Investigation.

Corresponding author

Correspondence to Jing Xu.

Ethics declarations

Conflict of interest

There are no conflicts of interest. The authors declare that they have no competing interests.

Ethical approval

There are no experiments involving human tissue.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 781.0 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Xu, J., Ma, Y. et al. Flower ball MoS2 embedded in sheet-like Sm2WO6 to construct p–n heterojunction for photocatalytic hydrogen evolution. J Mater Sci: Mater Electron 35, 423 (2024). https://doi.org/10.1007/s10854-024-12171-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12171-w

Navigation