Skip to main content
Log in

Nb2O5 and AlNbO4 coatings formed by plasma electrolytic oxidation of niobium: synthesis, characterization, and photocatalytic activity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study describes the formation of efficient photocatalysts on a niobium substrate using plasma electrolytic oxidation (PEO) in an alkaline electrolyte both with and without the addition of NaAlO2. The process of PEO was analyzed by using optical emission spectroscopy and real-time imaging. Scanning electron microscopy, energy-dispersive x-ray spectroscopy, x-ray diffraction, x-ray photoelectron spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy, and photoluminescence were used to characterize the formed photocatalysts. Photodegradation experiments in an aqueous solution of methyl orange were conducted to assess the photocatalytic activity (PA) of formed coatings. The PA of Nb2O5 coatings generated in pure alkaline electrolytes was found to be lower than that of AlNbO4 coatings formed in alkaline electrolytes with added NaAlO2. The significant PA of both Nb2O5 and AlNbO4 coatings, due to their strong ultraviolet absorption, was associated with high concentrations of oxygen vacancy. After 8 h of irradiation, the PA for AlNbO4 coating formed after 15 min in an alkaline electrolyte with 2 g/L NaAlO2 reached around 81%. Furthermore, the study revealed that by adding ZnO and Eu2O3 particles into the alkaline electrolyte with + 2 g/L NaAlO2, coatings such as AlNbO4/ZnO and AlNbO4:Eu3+/Eu2+ with improved PA comparing to AlNbO4 alone could be produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. M.F. Hanafi, N. Sapawe, A review on the water problem associated with organic pollutants derived from phenol, methyl orange, and remazol brilliant blue dyes. Mater. Today. 31, A141–A150 (2020). https://doi.org/10.1016/j.matpr.2021.01.258

    Article  CAS  Google Scholar 

  2. D. Zhua, Q. Zhou, Action and mechanism of semiconductor photocatalysis on degradation of organic pollutants in water treatment: a review. Environ. Nanotechnol. Monit. Manag. 12, 100255 (2019). https://doi.org/10.1016/j.enmm.2019.100255

    Article  Google Scholar 

  3. A. Pattnaika, J.N. Sahu, A.K. Poonia, P. Ghosh, Current perspective of nano-engineered metal oxide based photocatalysts in advanced oxidation processes for degradation of organic pollutants in wastewater. Chem. Eng. Res. Des. 190, 667–686 (2023). https://doi.org/10.1016/j.cherd.2023.01.014

    Article  CAS  Google Scholar 

  4. S.S. Shinde, C.H. Bhosale, K.Y. Rajpure, J.H. Lee, Remediation of wastewater: role of hydroxyl radicals. J. Photochem. Photobiol. B 141, 210–216 (2014). https://doi.org/10.1016/j.jphotobiol.2014.10.015

    Article  CAS  PubMed  Google Scholar 

  5. Y. Nosaka, A. Nosaka, Understanding hydroxyl radical (OH) generation processes in photocatalysis. ACS Energy Lett. 1, 356–359 (2016). https://doi.org/10.1021/acsenergylett.6b00174

    Article  CAS  Google Scholar 

  6. K. Su, H. Liu, Z. Gao, P. Fornasiero, F. Wang, Nb2O5-based photocatalysts. Adv. Sci. 8, 2003156 (2021). https://doi.org/10.1002/advs.202003156

    Article  CAS  Google Scholar 

  7. P. Zhang, M. Wang, J. Wang, X. Teng, S. Zhang, H. Xie, S. Ding, Facile synthesis and characterization of low crystalline Nb2O5 ultrafine nanoparticles as a new efficient photocatalyst. J. Non-Cryst Solids. 500, 371–376 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.08.026

    Article  CAS  ADS  Google Scholar 

  8. C.L. Ücker, V. Goetzke, S.R. Almeida, E.C. Moreira, M.M. Ferrer, P.L.G. Jardim, M.L. Moreira, C.W. Raubach, S. Cava, Photocatalytic degradation of rhodamine B using Nb2O5 synthesized with different niobium precursors: factorial design of experiments. Ceram. Int. 47, 20570–20578 (2021). https://doi.org/10.1016/j.ceramint.2021.04.066

    Article  CAS  Google Scholar 

  9. M. Weiss, R. Marschall, Syntheses and characterisation of p-type copper niobium oxides for photocatalytic hydrogen generation. Appl. Catal. A 661, 119234 (2023). https://doi.org/10.1016/j.apcata.2023.119234

    Article  CAS  Google Scholar 

  10. C. Ladasiu, N. Kulischow, R. Marschall, Tuning the photocatalytic activity of layered perovskite niobates by controlled ion exchange and hydration. Catal. Sci. Technol. 12, 1450–1457 (2022). https://doi.org/10.1039/D1CY02057A

    Article  CAS  Google Scholar 

  11. S. Suzuki, K. Teshima, A. Yamaguchi, K. Yubuta, T. Shishido, S. Oishi, Fabrication and photocatalytic performance of highly crystalline nanosheets derived from flux-grown KNb3O8 crystals. CrystEngComm. 14, 987–992 (2012). https://doi.org/10.1039/C1CE06035J

    Article  CAS  Google Scholar 

  12. K. Saito, K. Koga, A. Kudo, Lithium niobate nanowires for photocatalytic water splitting. Dalton Trans. 40, 3909–3913 (2011). https://doi.org/10.1039/C0DT01844A

    Article  CAS  PubMed  Google Scholar 

  13. T.T. Zhang, K. Zhao, J.G. Yu, J. Jin, Y. Qi, H.Q. Li, X.J. Hou, G. Liu, Photocatalytic water splitting for hydrogen generation on cubic, orthorhombic, and tetragonal KNbO3 microcubes. Nanoscale. 5, 8375 (2013). https://doi.org/10.1039/C3NR02356G

    Article  CAS  PubMed  ADS  Google Scholar 

  14. P. Li, S. Ouyang, Y. Zhang, T. Kako, J. Ye, Surface-coordination-induced selective synthesis of cubic and orthorhombic NaNbO3 and their photocatalytic properties. J. Mater. Chem. A 1, 1185 (2013). https://doi.org/10.1039/C2TA00260D

    Article  CAS  Google Scholar 

  15. I.-S. Cho, S.T. Bae, D.H. Kim, K.S. Hong, Effects of crystal and electronic structures of ANb2O6 (A = ca, Sr, Ba) metaniobate compounds on their photocatalytic H2 evolution from pure water. Int. J. Hydrog. Energy 35, 12954–12960 (2010). https://doi.org/10.1016/j.ijhydene.2010.04.057

    Article  CAS  Google Scholar 

  16. W. Ai, S. Xiong, Structural and optical properties of Nb2O5 films prepared by dual ion assisted deposition. Opt. Laser Technol. 150, 107850 (2022). https://doi.org/10.1016/j.optlastec.2022.107850

    Article  CAS  Google Scholar 

  17. A.A. Atta, M.M. El-Nahass, A.M. Hassanien, K.M. Elsabawy, M.M.A. El-Raheema, A. Alhuthali, S.E. Alomariy, M.S. Algamdi, Effect of thermal annealing on structural, optical and electrical properties of transparent Nb2O5 thin films. Mater. Today Commun. 13, 112–118 (2017). https://doi.org/10.1016/j.mtcomm.2017.09.004

    Article  CAS  Google Scholar 

  18. T.W. Clyne, S.C. Troughton, A review of recent work on discharge characteristics during plasma electrolytic oxidation of various metals. Int. Mater. Rev. 64, 127–162 (2019). https://doi.org/10.1080/09506608.2018.1466492

    Article  CAS  Google Scholar 

  19. M. Kaseem, S. Fatimah, N. Nashrah, Y.G. Ko, Recent progress in surface modification of metals coated by plasma electrolytic oxidation: principle, structure, and performance. Prog. Mater. Sci. 117, 100735 (2021). https://doi.org/10.1016/j.pmatsci.2020.100735

    Article  CAS  Google Scholar 

  20. S. Stojadinović, R. Vasilić, M. Perić, Investigation of plasma electrolytic oxidation on valve metals by means of molecular spectroscopy – a review. RSC Adv. 4, 25759 (2014). https://doi.org/10.1080/09506608.2018.1466492

    Article  CAS  ADS  Google Scholar 

  21. F. Simchen, M. Sieber, A. Kopp, T. Lampke, Introduction to plasma electrolytic oxidation - an overview of the process and applications. Coatings. 10, 628 (2020). https://doi.org/10.3390/coatings10070628

    Article  CAS  Google Scholar 

  22. K. Babaei, A. Fattah-alhosseini, R. Chaharmahali, A review on plasma electrolytic oxidation (PEO) of niobium: mechanism, properties and applications. Surf. Interfaces. 21, 100719 (2020). https://doi.org/10.1016/j.surfin.2020.100719

    Article  CAS  Google Scholar 

  23. T. Wu, C. Blawert, M. Serdechnova, P. Karlova, G. Dovzhenko, D.C.F. Wieland, S. Stojadinović, R. Vasilić, K. Mojsilović, M.L. Zheludkevich, Formation of plasma electrolytic oxidation coatings on pure niobium in different electrolytes. Appl. Surf. Sci. 573, 151629 (2022). https://doi.org/10.1016/j.apsusc.2021.151629

    Article  CAS  Google Scholar 

  24. S. Stojadinović, R. Vasilić, Orange–red photoluminescence of Nb2O5:Eu3+, Sm3+ coatings formed by plasma electrolytic oxidation of niobium. J. Alloys Compd. 685, 881–889 (2016). https://doi.org/10.1016/j.jallcom.2016.06.192

    Article  CAS  Google Scholar 

  25. S. Stojadinović, N. Tadić, N. Radić, P. Stefanov, B. Grbić, R. Vasilić, Anodic luminescence, structural, photoluminescent, and photocatalytic properties of anodic oxide films grown on niobium in phosphoric acid. Appl. Surf. Sci. 355, 912–920 (2015). https://doi.org/10.1016/j.apsusc.2015.07.174

    Article  CAS  ADS  Google Scholar 

  26. Y. An, Z. Guo, J. Jiang, D. Zhu, A. Islam, Y. Chen, C. Jiang, Q. Zhao, Z. Sun, W. Zhang, Y. Zhao, Ablation behavior of PEO coatings on niobium alloy. J. Alloys Compd. 938, 168552 (2023). https://doi.org/10.1016/j.jallcom.2022.168552

    Article  CAS  Google Scholar 

  27. Y. Ge, Y. Wang, Y. Cui, Y. Zou, L. Guo, J. Ouyang, D. Jia, Y. Zhou, Growth of plasma electrolytic oxidation coatings on Nb and corresponding corrosion resistance. Appl. Surf. Sci. 491, 526–534 (2019). https://doi.org/10.1016/j.apsusc.2019.06.114

    Article  CAS  ADS  Google Scholar 

  28. M. Sowa, W. Simka, Electrochemical behavior of plasma electrolytically oxidized niobium in simulated physiological environment. Surf. Coat. Technol. 344, 121–131 (2018). https://doi.org/10.1016/j.surfcoat.2018.03.013

    Article  CAS  Google Scholar 

  29. B.L. Pereira, C.M. Lepienski, I. Mazzaro, N.K. Kuromoto, Apatite grown in niobium by two-step plasma electrolytic oxidation. Mater. Sci. Eng. C 77, 1235–1241 (2017). https://doi.org/10.1016/j.msec.2016.10.073

    Article  CAS  Google Scholar 

  30. B.L. Pereira, A.R. da Luz, C.M. Lepienski, I. Mazzaro, N.K. Kuromoto, Niobium treated by plasma electrolytic oxidation with calcium and phosphorus electrolytes. J. Mech. Behav. Biomed. Mater. 77, 347–352 (2018). https://doi.org/10.1016/j.jmbbm.2017.08.010

    Article  CAS  PubMed  Google Scholar 

  31. M. Karbasi, E. Nikoomanzari, R. Hosseini, H. Bahramian, R. Chaharmahali, S. Giannakis, M. Kaseem, A. Fattah-alhosseini, A review on plasma electrolytic oxidation coatings for organic pollutant degradation: how to prepare them and what to expect of them? J. Environ. Chem. Eng. 11, 110027 (2023). https://doi.org/10.1016/j.jece.2023.110027

    Article  CAS  Google Scholar 

  32. R. Hosseini, A. Fattah-alhosseini, M. Karbasi, S. Giannakis, Tailoring surface defects in plasma electrolytic oxidation (PEO) treated 2-D black TiO2: post-treatment role, and intensification by peroxymonosulfate activation in visible light-driven photocatalysis. Appl. Catal. B 340, 123197 (2024). https://doi.org/10.1016/j.apcatb.2023.123197

    Article  CAS  Google Scholar 

  33. J.P. Velasquez-Tamayo, D.A. Torres-Ceron, S. Amaya-Roncancio, S.I. Santacruz, C.D. Acosta-Medina, E. Restrepo-Parra, Use of nickel-electroplating wastewater to synthesize Ni-doped TiO2 and NiTiO3 coatings by plasma electrolytic oxidation to treat hexavalent chromium in real electroplating wastewater. Chem. Eng. J. 477, 147080 (2023). https://doi.org/10.1016/j.cej.2023.147080

    Article  CAS  Google Scholar 

  34. A. Ćirić, S. Stojadinović, Photoluminescence of ZrO2:Gd3+ and ZrO2:Dy3+ coatings formed by the plasma electrolytic oxidation. J. Alloys Compd. 832, 154907 (2020). https://doi.org/10.1016/j.jallcom.2020.154907

    Article  CAS  Google Scholar 

  35. S. Stojadinović, N. Radić, R. Vasilić, ZnO particles modified MgAl coatings with improved photocatalytic activity formed by plasma electrolytic oxidation of AZ31 magnesium alloy in aluminate electrolyte. Catalysts. 12, 1503 (2022). https://doi.org/10.3390/catal12121503

    Article  CAS  Google Scholar 

  36. K. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto, Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique. Electrochem. Commun. 2, 207–210 (2000). https://doi.org/10.1016/S1388-2481(00)00006-0

    Article  CAS  Google Scholar 

  37. https://physics.nist.gov/PhysRefData/ASD/lines_form.html

  38. G. Lente, Facts and alternative facts in chemical kinetics: remarks about the kinetic use of activities, termolecular processes, and linearization techniques. Curr. Opin. Chem. Eng. 21, 76–83 (2018). https://doi.org/10.1016/j.coche.2018.03.007

    Article  MathSciNet  Google Scholar 

  39. B.L. Pereira, C.M. Lepienski, V. Seba, M.J.D. Nugent, R. Torres, P.A.B. Kuroda, C.R. Grandini, P. Soares, Plasma electrolytic oxidation up to four-steps performed on Niobium and Nb-Ti alloys. Surf. Coat. Technol. 438, 128369 (2022). https://doi.org/10.1016/j.surfcoat.2022.128369

    Article  CAS  Google Scholar 

  40. S. Santhosh, K. Balamurugan, M. Mathankumar, K. Shankar, B. Subramanian, Electrochromic and optical studies on Nb2O5–NiO mixed oxide films for smart window applications. Opt. Mater. 135, 113248 (2023). https://doi.org/10.1016/j.optmat.2022.113248

    Article  CAS  Google Scholar 

  41. D. Wei, X. Yang, Y. Liu, J.H. Kim, S.H. Park, H.J. Seo, B.R. Lee, Intrinsic- and rare earth ion-activated luminescence in NbAlO4 with wide structure channels. Inorg. Chem. 62, 9563–9577 (2023). https://doi.org/10.1021/acs.inorgchem.3c01008

    Article  CAS  PubMed  Google Scholar 

  42. E.O. Filatova, A.S. Konashuk, Interpretation of the changing the band gap of Al2O3 depending on its crystalline form: connection with different local symmetries. J. Phys. Chem. C 119, 20755–20761 (2015). https://doi.org/10.1021/acs.jpcc.5b06843

    Article  CAS  Google Scholar 

  43. C. Balamurugan, A. Subashini, G.N. Chaudhari, A. Subramania, Development of wide band gap sensor based on AlNbO4 nanopowder for ethanol. J. Alloys Compd. 526, 110–115 (2012). https://doi.org/10.1016/j.jallcom.2012.01.085

    Article  CAS  Google Scholar 

  44. M. Ai, J.-W. Zhang, Y.-W. Wu, L. Pan, C. Shi, J.-J. Zou, Role of vacancies in photocatalysis: a review of recent progress. Chem. Asian J. 15, 3599–3619 (2020). https://doi.org/10.1002/asia.202000889

    Article  CAS  PubMed  Google Scholar 

  45. J. Liqiang, Q. Yichun, W. Baiqi, L. Shudan, J. Baojiang, Y. Libin, F. Wei, F. Honggang, S. Jiazhong, Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol Energy Mater. Sol Cells. 90, 1773–1787 (2006). https://doi.org/10.1016/j.solmat.2005.11.007

    Article  CAS  Google Scholar 

  46. Y. Nosaka, A.Y. Nosaka, Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 117, 11302–11336 (2017). https://doi.org/10.1021/acs.chemrev.7b00161

    Article  CAS  PubMed  Google Scholar 

  47. S. Stojadinović, N. Radić, N. Tadić, R. Vasilić, A. Tsanev, TiO2/Bi2O3 coatings formed by plasma electrolytic oxidation of titanium for photocatalytic applications. J. Mater. Sci. Mater. Electron. 33, 4467–4481 (2022). https://doi.org/10.1007/s10854-021-07637-0

    Article  CAS  Google Scholar 

  48. S. Stojadinović, N. Radić, R. Vasilić, High photocatalytic activity of TiO2/Al2TiO5 coatings obtained by plasma electrolytic oxidation of titanium. Mater. Lett. 338, 134069 (2023). https://doi.org/10.1016/j.matlet.2023.134069

    Article  CAS  Google Scholar 

  49. S. Stojadinović, N. Radić, R. Vasilić, Application of micro-arc discharges during anodization of tantalum for synthesis of photocatalytic active Ta2O5 coatings. Micromachines. 14, 701 (2023). https://doi.org/10.3390/mi14030701

    Article  PubMed  PubMed Central  Google Scholar 

  50. S. Stojadinović, N. Radić, M. Perković, Highly efficient ZrO2 photocatalysts in the presence of UV radiation synthesized in a very short time by plasma electrolytic oxidation of zirconium. Opt. Mater. 146, 114608 (2023). https://doi.org/10.1016/j.optmat.2023.114608

    Article  CAS  Google Scholar 

  51. K. Qi, B. Cheng, J. Yu, W. Ho, Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J. Alloys Compd. 727, 792–820 (2017). https://doi.org/10.1016/j.jallcom.2017.08.142

    Article  CAS  Google Scholar 

  52. S. Stojadinović, N. Tadić, N. Radić, B. Stojadinović, B. Grbić, R. Vasilić, Synthesis and characterization of Al2O3/ZnO coatings formed by plasma electrolytic oxidation. Surf. Coat. Technol. 276, 573–579 (2015). https://doi.org/10.1016/j.surfcoat.2015.06.013

    Article  CAS  Google Scholar 

  53. S. Stojadinović, N. Tadić, N. Radić, B. Grbić, R. Vasilić, MgO/ZnO coatings formed on magnesium alloy AZ31 by plasma electrolytic oxidation: Structural, photoluminescence and photocatalytic investigation. Surf. Coat. Technol. 310, 98–105 (2017). https://doi.org/10.1016/j.surfcoat.2016.12.073

    Article  CAS  Google Scholar 

  54. S. Stojadinović, N. Radić, B. Grbić, S. Maletić, P. Stefanov, A. Pačevski, R. Vasilić, Structural, photoluminescent and photocatalytic properties of TiO2:Eu3+ coatings formed by plasma electrolytic oxidation. Appl. Surf. Sci. 370, 218–228 (2016). https://doi.org/10.1016/j.apsusc.2016.02.131

    Article  CAS  ADS  Google Scholar 

  55. S. Stojadinović, N. Radić, R. Vasilić, Photoluminescent and photocatalytic properties of Eu3+-doped MgAl oxide coatings formed by plasma electrolytic oxidation of AZ31 magnesium alloy. Coatings. 12, 1830 (2022). https://doi.org/10.3390/coatings12121830

    Article  CAS  Google Scholar 

  56. J.J. Rogers, K.J.D. MacKenzie, G. Rees, J.V. Hanna, New phosphors based on the reduction of Eu(III) to Eu(II) in ion-exchanged aluminosilicate and gallium silicate inorganic polymers. Ceram. Inter. 44, 1110–1119 (2018). https://doi.org/10.1016/j.ceramint.2017.10.066

    Article  CAS  Google Scholar 

  57. H. Xie, J. Lu, Y. Guan, Y. Huang, D. Wei, H.J. Seo, Abnormal reduction, Eu3+→ Eu2+, and defect centres in Eu3+-doped pollucite, CsAlSi2O6, prepared in an oxidizing atmosphere. Inorg. Chem. 53, 827–834 (2014). https://doi.org/10.1021/ic402169w

    Article  CAS  PubMed  Google Scholar 

  58. B. Zhai, D. Liu, Y. He, L. Yang, Y.M. Huang, Tuning the photoluminescence of Eu2+ and Eu3+ co-doped SrSO4 through post-annealing technique. J. Lumin. 194, 485–493 (2018). https://doi.org/10.1016/j.jlumin.2017.10.078

    Article  CAS  Google Scholar 

  59. R. Al-Gaashani, S. Radiman, A.R. Daud, N. Tabet, Y. Al-Douri, XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods. Ceram. Int. 39, 2283–2292 (2013). https://doi.org/10.1016/j.ceramint.2012.08.075

    Article  CAS  Google Scholar 

  60. M. Anpo, Y. Kubokawa, Photoluminescence of zinc oxide powder as a probe of electron-hole surface processes. J. Phys. Chem. 88, 5556–5560 (1984). https://doi.org/10.1021/j150667a019

    Article  CAS  Google Scholar 

  61. P.S. Xu, Y.M. Sun, C.S. Shi, F.Q. Xu, H.B. Pan, The electronic structure and spectral properties of ZnO and its defects. Nucl. Instrum. Methods Phys. Res. B 199, 286–290 (2003). https://doi.org/10.1016/S0168-583X(02)01425-8

    Article  CAS  ADS  Google Scholar 

Download references

Funding

This work was funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant Nos. 451-03-47/2023-01/200162 and 451-03-68/2023-14/200026).

Author information

Authors and Affiliations

Authors

Contributions

Stevan Stojadinović: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Writing—original draft, Writing—review & editing, Visualization. Nenad Radić: Investigation. Mladen Perković: Investigation.

Corresponding author

Correspondence to Stevan Stojadinović.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not contain any studies involving humans and animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stojadinović, S., Radić, N. & Perković, M. Nb2O5 and AlNbO4 coatings formed by plasma electrolytic oxidation of niobium: synthesis, characterization, and photocatalytic activity. J Mater Sci: Mater Electron 35, 410 (2024). https://doi.org/10.1007/s10854-024-12168-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12168-5

Navigation