Skip to main content
Log in

ZnCo-MOF derived porous ZnO/Co/C composites as superior electromagnetic wave absorbers

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The ZnO/Co/C composite materials, consisting of ZnO and ferromagnetic Co embedded in a carbon skeleton were successfully synthesized through the pyrolysis of a ZnCo-MOF precursor. The evolution of phase and microstructure was systematically investigated. The results indicate that the EMW absorption performance is dependent on the degree of graphitization and phase compositions. When the precursor pyrolysis temperature is 800 ℃, the ZnO/Co/C composites benefiting from the synergistic effect of constituents and microstructure demonstrate exceptional EMW absorption performance, with a minimum reflection loss (RLmin) of -52.2 dB at 11.5 GHz and a sample thickness of 2.23 mm. The widest effective absorption bandwidth (EAB) harvests 6.7 GHz (11.3-18 GHz) with a sample thickness of 2 mm, encompassing the entire Ku band. Herein, this study shed light on exploring high-efficiency MOF-based EMW absorption materials with rational design of components and structure, and the as-prepared ZnO/Co/C composites are potential candidates for EMW absorption applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. X. Zhou, B. Wang, Z. Jia, X. Zhang, X. Liu, K. Wang, B. Xu, G. Wu, Dielectric behavior of Fe(3)N@C composites with green synthesis and their remarkable electromagnetic wave absorption performance. J. Colloid Interface Sci. 582(Pt B), 515–525 (2021). https://doi.org/10.1016/j.jcis.2020.08.087

    Article  CAS  PubMed  Google Scholar 

  2. P. Xue, Y. Chen, Y. Xu, C. Valenzuela, X. Zhang, H.K. Bisoyi, X. Yang, L. Wang, X. Xu, Q. Li, Bioinspired MXene-Based Soft Actuators Exhibiting Angle-Independent Structural Color. Nano-Micro Lett. 15(1), 1 (2022). https://doi.org/10.1007/s40820-022-00977-4

    Article  CAS  Google Scholar 

  3. J. Qian, S. Ren, A. shui, B. Du, C. He, S. Zeng, M. Cai, X. Zhong, A design of core-shell structure for γ-MnO2 microspheres with tunable electromagnetic wave absorption performance. Ceram. Int. 48(12), 744–753 (2022). https://doi.org/10.1016/j.ceramint.2022.02.224

    Article  CAS  Google Scholar 

  4. Y. Jiang, X. Fu, Z. Zhang, W. Du, P. Xie, C. Cheng, R. Fan, Enhanced microwave absorption properties of Fe3C/C nanofibers prepared by electrospinning. J. Alloy Compd. 804, 305–313 (2019). https://doi.org/10.1016/j.jallcom.2019.07.038

    Article  CAS  Google Scholar 

  5. Y. Guo, M. Zhang, T. Cheng, Y. Xie, L. Zhao, L. Jiang, W. Zhao, L. Yuan, A. Meng, J. Zhang, T. Wang, Z. Li, Enhancing electromagnetic wave absorption in carbon fiber using FeS2 nanoparticles. Nano Res. 16(7), 9591–9601 (2023). https://doi.org/10.1007/s12274-023-5776-x

    Article  CAS  Google Scholar 

  6. B. Li, N. Wu, Q. Wu, Y. Yang, F. Pan, W. Liu, J. Liu, Z. Zeng, From 100% utilization of MAX/MXene to Direct Engineering of Wearable, multifunctional E-Textiles in Extreme environments. Adv. Funct. Mater. 33(41), 2307301 (2023). https://doi.org/10.1002/adfm.202307301

    Article  CAS  Google Scholar 

  7. Y.-L. Wang, S.-H. Yang, H.-Y. Wang, G.-S. Wang, X.-B. Sun, P.-G. Yin, Hollow porous CoNi/C composite nanomaterials derived from MOFs for efficient and lightweight electromagnetic wave absorber. Carbon. 167, 485–494 (2020). https://doi.org/10.1016/j.carbon.2020.06.014

    Article  CAS  Google Scholar 

  8. Z. Wang, L. Wu, J. Zhou, B. Shen, Z. Jiang, Enhanced microwave absorption of Fe3O4 nanocrystals after heterogeneously growing with ZnO nanoshell. RSC Adv. 3(10), 3309 (2013). https://doi.org/10.1039/C2RA23404A

    Article  CAS  Google Scholar 

  9. Z. Li, X. Han, Y. Ma, D. Liu, Y. Wang, P. Xu, C. Li, Y. Du, MOFs-Derived Hollow Co/C Microspheres with enhanced microwave absorption performance. ACS Sustain. Chem. Eng. 6(7), 8904–8913 (2018). https://doi.org/10.1021/acssuschemeng.8b01270

    Article  CAS  Google Scholar 

  10. J. Zhu, H. Gu, Z. Luo, N. Haldolaarachige, D.P. Young, S. Wei, Z. Guo, Carbon nanostructure-derived polyaniline metacomposites: electrical, dielectric, and giant magnetoresistive properties. Langmuir. 28(27), 46–55 (2012). https://doi.org/10.1021/la302031f

    Article  CAS  Google Scholar 

  11. N. Wu, H. Lv, J. Liu, Y. Liu, S. Wang, W. Liu, Improved electromagnetic wave absorption of Co nanoparticles decorated carbon nanotubes derived from synergistic magnetic and dielectric losses. Phys. Chem. Chem. Phys. 18(46), 542–550 (2016). https://doi.org/10.1039/C6CP06066H

    Article  CAS  Google Scholar 

  12. L. Zhao, Y. Guo, Y. Xie, T. Cheng, A. Meng, L. Yuan, W. Zhao, C. Sun, Z. Li, M. Zhang, Construction of SiCNWS@NiCo2O4@PANI 1D hierarchical nanocomposites toward high-efficiency microwave absorption. Appl. Surf. Sci. 592, 153324 (2022). https://doi.org/10.1016/j.apsusc.2022.153324

    Article  CAS  Google Scholar 

  13. M. Cai, A. Shui, X. Wang, C. He, J. Qian, B. Du, A facile fabrication and high-performance electromagnetic microwave absorption of ZnO nanoparticles. J. Alloy Compd. 842, 155638 (2020). https://doi.org/10.1016/j.jallcom.2020.155638

    Article  CAS  Google Scholar 

  14. B. Du, M. Cai, X. Wang, J. Qian, C. He, A. Shui, Enhanced electromagnetic wave absorption property of binary ZnO/NiCo2O4 composites. J. Adv. Ceram. 10(4), 832–842 (2021). https://doi.org/10.1007/s40145-021-0476-z

    Article  CAS  Google Scholar 

  15. S. Dong, X. Zhang, W. Zhang, J. Han, P. Hu, A multiscale hierarchical architecture of a SiC whiskers–graphite nanosheets/polypyrrole ternary composite for enhanced electromagnetic wave absorption. J. Mater. Chem. C 6(40), 804–814 (2018). https://doi.org/10.1039/C8TC03683G

    Article  Google Scholar 

  16. S. Dong, W. Tang, P. Hu, X. Zhao, X. Zhang, J. Han, P. Hu, Achieving excellent Electromagnetic Wave absorption capabilities by construction of MnO Nanorods on Porous Carbon composites Derived from Natural Wood via a simple Route. ACS Sustain. Chem. Eng. 7(13), 795–805 (2019). https://doi.org/10.1021/acssuschemeng.9b02100

    Article  CAS  Google Scholar 

  17. J. Qian, B. Du, C. He, M. Cai, X. Zhong, S. Ren, J. Lou, A. Shui, Morphology-controlled preparation and tunable electromagnetic wave absorption performance of manganese dioxide nanostructures. J. Am. Ceram. Soc. 105(5), 3339–3352 (2022). https://doi.org/10.1111/jace.18296

    Article  CAS  Google Scholar 

  18. Y. Deng, Y. Zheng, D. Zhang, C. Han, A. Cheng, J. Shen, G. Zeng, H. Zhang, A novel and facile-to-synthesize three-dimensional honeycomb-like nano-Fe3O4@C composite: electromagnetic wave absorption with wide bandwidth. Carbon. 169, 118–218 (2020). https://doi.org/10.1016/j.carbon.2020.05.021

    Article  CAS  Google Scholar 

  19. M. Fu, Q. Jiao, Y. Zhao, Preparation of NiFe2O4 nanorod–graphene composites via an ionic liquid assisted one-step hydrothermal approach and their microwave absorbing properties. J. Mater. Chem. A (2013). https://doi.org/10.1039/C3TA10402H

    Article  Google Scholar 

  20. B. Li, Y. Yang, N. Wu, S. Zhao, H. Jin, G. Wang, X. Li, W. Liu, J. Liu, Z. Zeng, Bicontinuous, High-Strength, and multifunctional chemical-cross-linked MXene/Superaligned Carbon Nanotube Film. ACS Nano. 16(11), 19293–19304 (2022). https://doi.org/10.1021/acsnano.2c08678

    Article  CAS  PubMed  Google Scholar 

  21. X. Gu, W. Zhu, C. Jia, R. Zhao, W. Schmidt, Y. Wang, Synthesis and microwave absorbing properties of highly ordered mesoporous crystalline NiFe2O4. Chem. Commun. 47(18), 337–339 (2011). https://doi.org/10.1039/C0CC05800A

    Article  Google Scholar 

  22. N. Wu, C. Liu, D. Xu, J. Liu, W. Liu, Q. Shao, Z. Guo, Enhanced Electromagnetic Wave absorption of three-dimensional porous Fe3O4/C composite flowers. ACS Sustain. Chem. Eng. 6(9), 471–480 (2018). https://doi.org/10.1021/acssuschemeng.8b03097

    Article  CAS  Google Scholar 

  23. Z. Li, H. Lin, Y. Xie, L. Zhao, Y. Guo, T. Cheng, H. Ling, A. Meng, S. Li, M. Zhang, Monodispersed Co@C nanoparticles anchored on reclaimed carbon black toward high-performance electromagnetic wave absorption. J. Mater. Sci. Technol. 124, 182–192 (2022). https://doi.org/10.1016/j.jmst.2022.03.004

    Article  CAS  Google Scholar 

  24. Y. Xie, Y. Guo, T. Cheng, L. Zhao, T. Wang, A. Meng, M. Zhang, Z. Li, Efficient electromagnetic wave absorption performances dominated by exchanged resonance of lightweight PC/Fe3O4@PDA hybrid nanocomposite. Chem. Eng. J. (2023). https://doi.org/10.1016/j.cej.2022.141205

    Article  Google Scholar 

  25. D. Ding, Y. Wang, X. Li, R. Qiang, P. Xu, W. Chu, X. Han, Y. Du, Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon. 111, 722–732 (2017). https://doi.org/10.1016/j.carbon.2016.10.059

    Article  CAS  Google Scholar 

  26. L. Wang, X. Bai, B. Wen, Z. Du, Y. Lin, Honeycomb-like Co/C composites derived from hierarchically nanoporous ZIF-67 as a lightweight and highly efficient microwave absorber. Compos. Part. B: Eng. 166, 464–471 (2019). https://doi.org/10.1016/j.compositesb.2019.02.054

    Article  CAS  Google Scholar 

  27. D. Liu, Y. Du, P. Xu, N. Liu, Y. Wang, H. Zhao, L. Cui, X. Han, Waxberry-like hierarchical Ni@C microspheres with high-performance microwave absorption. J. Mater. Chem. C 7(17), 5037–5046 (2019). https://doi.org/10.1039/C9TC00771G

    Article  CAS  Google Scholar 

  28. T. Cheng, Y. Guo, Y. Xie, L. Zhao, T. Wang, A. Meng, Z. Li, M. Zhang, Customizing the structure and chemical composition of ultralight carbon foams for superior microwave absorption performance. Carbon. 206, 181–191 (2023). https://doi.org/10.1016/j.carbon.2023.02.052

    Article  CAS  Google Scholar 

  29. L. Huang, J. Li, Z. Wang, Y. Li, X. He, Y. Yuan, Microwave absorption enhancement of porous C@CoFe2O4 nanocomposites derived from eggshell membrane. Carbon. 143, 507–516 (2019). https://doi.org/10.1016/j.carbon.2018.11.042

    Article  CAS  Google Scholar 

  30. M. Zhang, L. Zhao, W. Zhao, T. Wang, L. Yuan, Y. Guo, Y. Xie, T. Cheng, A. Meng, Z. Li, Boosted electromagnetic wave absorption performance from synergistic induced polarization of SiCNWs@MnO2@PPy heterostructures. Nano Res. 16(2), 3558–3569 (2022). https://doi.org/10.1007/s12274-022-5289-z

    Article  CAS  Google Scholar 

  31. X. Li, H. Yi, J. Zhang, J. Feng, F. Li, D. Xue, H. Zhang, Y. Peng, N.J. Mellors, Fe3O4–graphene hybrids: nanoscale characterization and their enhanced electromagnetic wave absorption in gigahertz range. J. Nanopart. Res. (2013). https://doi.org/10.1007/s11051-013-1472-1

    Article  Google Scholar 

  32. B. Li, N. Wu, Y. Yang, F. Pan, C. Wang, G. Wang, L. Xiao, W. Liu, J. Liu, Z. Zeng, Graphene Oxide-assisted multiple cross-linking of MXene for Large-Area, High-Strength, Oxidation-Resistant, and multifunctional films. Adv. Funct. Mater. 33(11), 2213357 (2023). https://doi.org/10.1002/adfm.202213357

    Article  CAS  Google Scholar 

  33. B. Wen, M.-S. Cao, Z.-L. Hou, W.-L. Song, L. Zhang, M.-M. Lu, H.-B. Jin, X.-Y. Fang, W.-Z. Wang, J. Yuan, Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon. 65, 124–139 (2013). https://doi.org/10.1016/j.carbon.2013.07.110

    Article  CAS  Google Scholar 

  34. Z. Zeng, G. Wang, B.F. Wolan, N. Wu, C. Wang, S. Zhao, S. Yue, B. Li, W. He, J. Liu, J.W. Lyding, Printable aligned single-walled Carbon Nanotube Film with outstanding thermal conductivity and electromagnetic interference shielding performance. Nano-Micro Lett. 14(1), 179 (2022). https://doi.org/10.1007/s40820-022-00883-9

    Article  CAS  Google Scholar 

  35. M. Zong, Y. Huang, N. Zhang, H. Wu, Influence of (RGO)/(ferrite) ratios and graphene reduction degree on microwave absorption properties of graphene composites. J. Alloy Compd. 644, 491–501 (2015). https://doi.org/10.1016/j.jallcom.2015.05.073

    Article  CAS  Google Scholar 

  36. Y. Yang, N. Wu, B. Li, W. Liu, F. Pan, Z. Zeng, J. Liu, Biomimetic porous MXene sediment-based hydrogel for high-performance and multifunctional electromagnetic interference shielding. ACS Nano. 16(9), 15042–15052 (2022). https://doi.org/10.1021/acsnano.2c06164

    Article  CAS  PubMed  Google Scholar 

  37. W. Deng, T. Li, H. Li, A. Dang, X. Liu, J. Zhai, H. Wu, Morphology modulated defects engineering from MnO2 supported on carbon foam toward excellent electromagnetic wave absorption. Carbon. 206, 192–200 (2023). https://doi.org/10.1016/j.carbon.2023.02.039

    Article  CAS  Google Scholar 

  38. X. Zhu, H. Qiu, P. Chen, R. Wang, C. Ping, Porous C/Co (derived from ZIF-67) embedded in anazotic g-C3N4 (PC/Co/ACN) composite as a super electromagnetic wave absorber. Carbon. 207, 59–66 (2023). https://doi.org/10.1016/j.carbon.2023.02.063

    Article  CAS  Google Scholar 

  39. R. Shu, X. Li, J. Shi, Construction of porous carbon-based magnetic composites derived from iron zinc bimetallic metal-organic framework as broadband and high-efficiency electromagnetic wave absorbers. J. Colloid Interface Sci. 633, 43–52 (2023). https://doi.org/10.1016/j.jcis.2022.11.078

    Article  CAS  PubMed  Google Scholar 

  40. X. Zhang, X.-L. Tian, Y. Qin, J. Qiao, F. Pan, N. Wu, C. Wang, S. Zhao, W. Liu, J. Cui, Z. Qian, M. Zhao, J. Liu, Z. Zeng, Conductive Metal–Organic frameworks with Tunable Dielectric properties for boosting Electromagnetic Wave absorption. ACS Nano. 17(13), 12510–12518 (2023). https://doi.org/10.1021/acsnano.3c02170

    Article  CAS  PubMed  Google Scholar 

  41. J. Meng, C. Niu, L. Xu, J. Li, X. Liu, X. Wang, Y. Wu, X. Xu, W. Chen, Q. Li, Z. Zhu, D. Zhao, L. Mai, General oriented formation of Carbon nanotubes from Metal-Organic frameworks. J. Am. Chem. Soc. 139(24), 8212–8221 (2017). https://doi.org/10.1021/jacs.7b01942

    Article  CAS  PubMed  Google Scholar 

  42. R. Shu, W. Li, Y. Wu, J. Zhang, G. Zhang, Nitrogen-doped Co-C/MWCNTs nanocomposites derived from bimetallic metal–organic frameworks for electromagnetic wave absorption in the X-band. Chem. Eng. J. 362, 513–524 (2019). https://doi.org/10.1016/j.cej.2019.01.090

    Article  CAS  Google Scholar 

  43. M. Šćepanović, M. Grujić-Brojčin, K. Vojisavljević, S. Bernik, T. Srećković, Raman study of structural disorder in ZnO nanopowders. J. Raman Spectrosc. 41(9), 914–921 (2010). https://doi.org/10.1002/jrs.2546

    Article  CAS  Google Scholar 

  44. M. Cai, A. Shui, Y. Wang, H. Xiong, S. Zeng, C. He, J. Qian, B. Du, Enhanced Photocatalytic Properties of Surfactants Modified ZnO Particles Synthesized Directly via Sonochemistry Technique. ChemistrySelect (2022). https://doi.org/10.1002/slct.202104016

    Article  Google Scholar 

  45. S. Wang, X. Ke, S. Zhong, Y. Lai, D. Qian, Y. Wang, Q. Wang, W. Jiang, Bimetallic zeolitic imidazolate frameworks-derived porous carbon-based materials with efficient synergistic microwave absorption properties: the role of calcining temperature. RSC Adv. 7(73), 436–444 (2017). https://doi.org/10.1039/C7RA08882E

    Article  Google Scholar 

  46. X. Zhao, S. Dong, C. Hong, X. Zhang, J. Han, Precursor infiltration and pyrolysis cycle-dependent microwave absorption and mechanical properties of lightweight and antioxidant carbon fiber felts reinforced silicon oxycarbide composites. J. Colloid Interface Sci. 568, 106–116 (2020). https://doi.org/10.1016/j.jcis.2020.02.045

    Article  CAS  PubMed  Google Scholar 

  47. J. Qian, Y. Pu, X. Wang, A. Shui, M. Cai, C. He, P. Hu, B. Du, Synthesis and microwave absorption performance of Fe-containing SiOC ceramics derived from silicon oxycarbide. J. Alloy Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.156029

    Article  Google Scholar 

  48. M. Zhang, H. Ling, T. Wang, Y. Jiang, G. Song, W. Zhao, L. Zhao, T. Cheng, Y. Xie, Y. Guo, W. Zhao, L. Yuan, A. Meng, Z. Li, An Equivalent Substitute Strategy for constructing 3D ordered porous Carbon foams and their electromagnetic attenuation mechanism. Nanomicro Lett. 14(1), 157 (2022). https://doi.org/10.1007/s40820-022-00900-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. B. Han, W. Chu, X. Han, P. Xu, D. Liu, L. Cui, Y. Wang, H. Zhao, Y. Du, Dual functions of glucose induced composition-controllable Co/C microspheres as high-performance microwave absorbing materials. Carbon. 168, 404–414 (2020). https://doi.org/10.1016/j.carbon.2020.07.005

    Article  CAS  Google Scholar 

  50. Y. Zhao, W. Wang, J. Wang, J. Zhai, X. Lei, W. Zhao, J. Li, H. Yang, J. Tian, J. Yan, Constructing multiple heterogeneous interfaces in the composite of bimetallic MOF-derivatives and rGO for excellent microwave absorption performance. Carbon. 173, 1059–1072 (2021). https://doi.org/10.1016/j.carbon.2020.11.090

    Article  CAS  Google Scholar 

  51. X. Lan, Z. Wang, Efficient high-temperature electromagnetic wave absorption enabled by structuring binary porous SiC with multiple interface. Carbon. 170, 517–526 (2020). https://doi.org/10.1016/j.carbon.2020.08.052

    Article  CAS  Google Scholar 

  52. J. Qian, B. Du, M. Cai, C. He, X. Wang, H. Xiong, A. Shui, Preparation of SiC Nanowire/Carbon Fiber Composites with Enhanced Electromagnetic Wave Absorption Performance. Adv. Eng. Mater. (2021). https://doi.org/10.1002/adem.202100434

    Article  Google Scholar 

  53. L. Xu, Y. Xiong, B. Dang, Z. Ye, C. Jin, Q. Sun, X. Yu, In-situ anchoring of Fe3O4/ZIF-67 dodecahedrons in highly compressible wood aerogel with excellent microwave absorption properties. Mater. Des. (2019). https://doi.org/10.1016/j.matdes.2019.108006

    Article  Google Scholar 

  54. X. Xu, F. Ran, Z. Fan, Z. Cheng, T. Lv, L. Shao, Z. Xie, Y. Liu, Acidified bimetallic MOFs constructed Co/N co-doped low dimensional hybrid carbon networks for high-efficiency microwave absorption. Carbon. 171, 211–220 (2021). https://doi.org/10.1016/j.carbon.2020.08.070

    Article  CAS  Google Scholar 

  55. X. Xu, F. Ran, Z. Fan, H. Lai, Z. Cheng, T. Lv, L. Shao, Y. Liu, Cactus-inspired Bimetallic Metal-Organic Framework-Derived 1D-2D Hierarchical Co/N-Decorated Carbon Architecture toward enhanced Electromagnetic Wave absorbing performance. ACS Appl. Mater. Interfaces. 11(14), 564–573 (2019). https://doi.org/10.1021/acsami.9b00356

    Article  CAS  Google Scholar 

  56. X. Zhang, F. Yan, S. Zhang, H. Yuan, C. Zhu, X. Zhang, Y. Chen, N.-D. Hollow, Carbon Polyhedron containing CoNi Alloy nanoparticles embedded within few-layer N-Doped Graphene as High-Performance Electromagnetic Wave Absorbing Material. ACS Appl. Mater. Interfaces. 10(29), 920–929 (2018). https://doi.org/10.1021/acsami.8b07107

    Article  CAS  Google Scholar 

  57. P. Liu, S. Gao, Y. Wang, Y. Huang, Y. Wang, J. Luo, Core-Shell CoNi@Graphitic Carbon decorated on B,N-Codoped Hollow Carbon polyhedrons toward Lightweight and high-efficiency microwave attenuation. ACS Appl. Mater. Interfaces. 11(28), 624–635 (2019). https://doi.org/10.1021/acsami.9b08525

    Article  CAS  Google Scholar 

  58. L. Wang, X. Yu, X. Li, J. Zhang, M. Wang, R. Che, MOF-derived yolk-shell Ni@C@ZnO Schottky contact structure for enhanced microwave absorption. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2019.123099

    Article  PubMed  PubMed Central  Google Scholar 

  59. P. Yi, X. Zhang, L. Jin, P. Chen, J. Tao, J. Zhou, Z. Yao, Regulating pyrolysis strategy to construct CNTs-linked porous cubic Prussian blue analogue derivatives for lightweight and broadband microwave absorption. Chem. Eng. J. (2022). https://doi.org/10.1016/j.cej.2021.132879

    Article  PubMed  PubMed Central  Google Scholar 

  60. W. Zhang, F.-Z. Dai, H. Xiang, B. Zhao, X. Wang, N. Ni, R. Karre, S. Wu, Y. Zhou, Enabling highly efficient and broadband electromagnetic wave absorption by tuning impedance match in high-entropy transition metal diborides (HE TMB2). J. Adv. Ceram. 10(6), 1299–1316 (2021). https://doi.org/10.1007/s40145-021-0505-y

    Article  CAS  Google Scholar 

  61. R. Shu, N. Li, X. Li, J. Sun, Preparation of FeNi/C composite derived from metal-organic frameworks as high-efficiency microwave absorbers at ultrathin thickness. J. Colloid Interface Sci. 606(Pt 2), 1918–1927 (2022). https://doi.org/10.1016/j.jcis.2021.10.011

    Article  CAS  PubMed  Google Scholar 

  62. S. Han, S. Wang, W. Li, Y. Lai, N. Zhang, N. Yang, Q. Wang, W. Jiang, Synthesis of PPy/Ni/RGO and enhancement on its electromagnetic wave absorption performance. Ceram. Int. 44(9), 352–361 (2018). https://doi.org/10.1016/j.ceramint.2018.03.046

    Article  CAS  Google Scholar 

  63. N. Wu, Y. Yang, C. Wang, Q. Wu, F. Pan, R. Zhang, J. Liu, Z. Zeng, Ultrathin cellulose nanofiber assisted ambient-Pressure-Dried, Ultralight, mechanically robust, multifunctional MXene aerogels. Adv. Mater. 35(1), 2207969 (2023). https://doi.org/10.1002/adma.202207969

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Shiyanjia lab (www.shiyanjia.com) for the support of TEM/HRTEM and XPS tests.

Funding

This work was supported by the National Natural Science Foundation of China (51972114, 52272062), National College Students Innovation and Entrepreneurship Training Program (202010561010), and 100-Step Ladder Climbing Program of South China University of Technology (j2tw202302019).

Author information

Authors and Affiliations

Authors

Contributions

Ren performed the experiment; Ren, Qian, Mo performed the data analyses and wrote the manuscript; Du, Shui, Qian helped perform the analysis with constructive discussions.

Corresponding authors

Correspondence to Anze Shui or Junjie Qian.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 395.2 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, S., Mo, P., Shui, A. et al. ZnCo-MOF derived porous ZnO/Co/C composites as superior electromagnetic wave absorbers. J Mater Sci: Mater Electron 35, 530 (2024). https://doi.org/10.1007/s10854-024-12148-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12148-9

Navigation