Skip to main content
Log in

Deposition time effect on copper oxide nano structures, an analysis study using chemical method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Copper oxide was synthesis by hydrothermal method using copper nano powder (30nm) and deionized water on quartz substrate. At temperature 100 °C, different experimental time ranging from (24–72 h). Different copper oxide phase was presented in X-Ray diffraction analyzer, the crystal size increased as the reaction time increased as it calculated using scherrer equation to be (21.1–32.03 nm), and Williamson Hall plot to be (40.3–87.7 nm). Also, Raman spectroscopy show different copper phase and the highest intensity peak at 220 cm−1, due to the cuprous oxide in all sample used to distinct chemical fingerprint for a particular molecule or material. Many of metal oxide bond was study by FTIR to clarify the compositional and chemical properties of the prepared samples. Optical characteristic with different absorption peaks of thin film show decrease in the band gap from (2.8–2.4 eV) as the reaction time increase. PL measurement used also to determine the band gap energy of the prepared thin film which found to be agreement with UV–Vis, and the band gap value is (2.7, 2.6, 2.5, 2.3, and 2.3 eV), respectively. Increasing in the surface roughness from (3.637–25.16 nm), and in the root mean square from (5–29.39 nm), and grain size with increasing the reaction time from (24–72 h), respectively, was measured by using AFM technique. Different morphologies were showed with increasing the reaction time, spherical and truncated octahedral in different type was obtained by field emission-scanning electron microscope (FE-SEM) as the particles subject to transformation caused the preparing agglomerated crystallites. The electrical characteristic was analysis use DC measurement to measure the activation energy which varied with reaction time. The figure of merit analysis shows that the copper oxidation state to obtain cuprous oxide (Cu2O) is mainly obtained at the 48 h-reaction time. The used of copper nano powder in hydrothermal method without adding any auxiliary material the main aim of this research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study available from the corresponding author “E. T. Salim, “on reasonable request.

References

  1. J.I. Handaker, Hydrothermal synthesis of CuO nanoparticles and a study on property variation with synthesis temperature. J. Appl. Fundam. Sci. 6(2), 52 (2020)

    Google Scholar 

  2. N.M. Shanid, M.A. Khadar, Evolution of nanostructure, phase transition and band gap tailoring in oxidized Cu thin films. Thin Solid Films 516(18), 6245–6252 (2008). https://doi.org/10.1016/j.tsf.2007.11.119

    Article  CAS  ADS  Google Scholar 

  3. O.A. Abdulrazzaq, E.T. Saleem, Inexpensive near-IR photodetector. Turk. J. Phys. 30, 35–39 (2006)

    Google Scholar 

  4. T.K. Wong et al., Current status and future prospects of copper oxide heterojunction solar cells. Materials 9(4), 271 (2016). https://doi.org/10.3390/ma9040271

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  5. F. Oba et al., Epitaxial growth of cuprous oxide electrodeposited onto semiconductor and metal substrates. J. Am. Ceram. Soc. 88(2), 253–270 (2005). https://doi.org/10.1111/j.1551-2916.2005.00118.x

    Article  CAS  Google Scholar 

  6. E.T. Salim, Rapid thermal oxidation for silicon nanocrystal based solar cell. Int. J. Nanoelectron. Mater. 5(2), 95–100 (2012)

    Google Scholar 

  7. A.S. Jasim, O.N. Salman, The effect of solvent variation on structural, optical, and electrical properties of TiO2 films prepared by hydrothermal method. J. Appl. Sci. Nanotechnol. 3(2), 59–69 (2023). https://doi.org/10.53293/jasn.2023.5562.1191

    Article  Google Scholar 

  8. Y. Wang, J. Pierson, Binary copper oxides as photovoltaic absorbers: recent progress in materials and applications. J. Phys. D 54(26), 263002 (2021). https://doi.org/10.1088/1361-6463/abf165

    Article  CAS  ADS  Google Scholar 

  9. M.M. Hassan, M.A. Fakhri, S.A. Adnan, Structural electrical and detection properties of copper oxide based on optoelectronic device. IOP Conf. Ser. 454(1), 012172 (2018). https://doi.org/10.1088/1757-899X/454/1/012172

    Article  Google Scholar 

  10. C. Qin et al., Fabricating high-quality Cu2O photocathode by magnetron sputtering: insight into defect states and charge carrier collection in Cu2O. ACS Appl. Energy Mater. 5(11), 14410–14422 (2022). https://doi.org/10.1021/acsaem.2c02974.s001

    Article  CAS  Google Scholar 

  11. L. Li et al., One-pot solid-state reaction approach to synthesize Ag-Cu2O/GO ternary nanocomposites with enhanced visible-light-responsive photocatalytic activity. Int. J. Photoenergy (2017). https://doi.org/10.1155/2017/8983717

    Article  Google Scholar 

  12. B.A. Badr, N.H. Numan, F.G. Khalid, M.A. Fakhri, A.W. Abdulwahhab, All optical investigations of copper oxide for detection devices. J. Ovonic Res. 15(1), 53–59 (2019)

    Google Scholar 

  13. N. Kumar et al., Structural and optical properties of sol–gel derived CuO and Cu2O nanoparticles. Mater. Today 41, 237–241 (2021). https://doi.org/10.1016/j.matpr.2020.08.800

    Article  CAS  Google Scholar 

  14. J. Ma et al., Visible-light photocatalytic decolorization of Orange II on Cu2O/ZnO nanocomposites. Ceram. Int. 41(2), 2050–2056 (2015). https://doi.org/10.1016/j.mtchem.2023.101513

    Article  CAS  Google Scholar 

  15. M.A. Fakhri, A.W. Abdulwahhab, S.M. Kadhim, M.S. Alwazni, S.A. Adnan, Thermal oxidation effects on physical properties of CuO2 thin films for optoelectronic application. Mater. Res. Express 6(2), 026429 (2018)

    Article  ADS  Google Scholar 

  16. X. Lan et al., Morphology-controlled hydrothermal synthesis and growth mechanism of microcrystal Cu2O. CrystEngComm 13(2), 633–636 (2010). https://doi.org/10.1039/c0ce00232a

    Article  CAS  Google Scholar 

  17. S.M. Badawy, R. El Khashab, A. Nayl, Synthesis, characterization and catalytic activity of Cu/Cu2O nanoparticles prepared in aqueous medium. Bull. Chem. React. Eng. Catal. 10(2), 169 (2015). https://doi.org/10.9767/bcrec.10.2.7984.169-174

    Article  CAS  Google Scholar 

  18. M.M. Hassan, M.A. Fakhri, S.A. Adnan, 2-D of nano photonic silicon fabrication for sensing application. Digest J. Nanomater. Biostruct. 14(4), 873–878 (2019)

    Google Scholar 

  19. N. Abid et al., Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: a review. Adv. Coll. Interface. Sci. 300, 102597 (2022). https://doi.org/10.1016/j.cis.2021.102597

    Article  CAS  Google Scholar 

  20. M.A. Fakhri, M.M. Hassan, Morphological and structural properties of Cu2O/2-D photonic silicon nano structure for gas sensors. AIP Conf. Proc. 2213(1), 020244 (2020)

    Article  CAS  Google Scholar 

  21. M.N.A.K. Alghurabi, R.S. Mahmood, E.T. Salim, S.F.H. Alhasan, F.G. Khalid, Structure, optical, and morphological investigations of nano copper oxide prepared using RPLD at different laser wavelength effects. Mater. Today 42, 2497–2501 (2021)

    Google Scholar 

  22. L. Pan et al., Cu2O film via hydrothermal redox approach: morphology and photocatalytic performance. J. Phys. Chem. C 118(30), 16335–16343 (2014). https://doi.org/10.1021/jp408056k

    Article  CAS  Google Scholar 

  23. S. Cao et al., Hydrothermal synthesis, characterization and gas sensing properties of novel Cu2O open hollow nanospheres. Ceram. Int. 43(5), 4721–4724 (2017). https://doi.org/10.1016/j.ceramint.2016.12.131

    Article  CAS  Google Scholar 

  24. K. Liu et al., Influence of pH on hydrothermal synthesis of photoactive Cu2O films in an acetate solution. Int. J. Electrochem. Sci. 17(220660), 2 (2022). https://doi.org/10.20964/2022.06.62

    Article  CAS  Google Scholar 

  25. M. Claros et al., Hydrothermal synthesis and annealing effect on the properties of gas-sensitive copper oxide nanowires. Chemosensors 10(9), 353 (2022). https://doi.org/10.3390/chemosensors10090353

    Article  CAS  Google Scholar 

  26. X. Jiang et al., Structure, optical properties and photocatalysis performance of Cu 2 O microspheres prepared by hydrothermal method. J. Mater. Sci. 27, 8856–8861 (2016). https://doi.org/10.1007/s10854-016-4911-9

    Article  CAS  Google Scholar 

  27. Dai, Y., et al. Cu2O Nanocrystals: study on hydrothermal morphology-modulated synthesis and photodegradation of organic pollutants. In: 3rd International Conference on Material, Mechanical and Manufacturing Engineering (IC3ME 2015). 2015. Atlantis Press, Doi:https://doi.org/10.2991/ic3me-15.2015.355.

  28. X. Chen et al., Hydrothermal synthesis of Cu2O with morphology evolution and its effect on visible-light photocatalysis. Mater. Lett. 297, 129921 (2021). https://doi.org/10.1016/j.matlet.2021.129921

    Article  CAS  Google Scholar 

  29. G. Aziz, Hydrothermal synthesis of cuprous oxide nanoflowers and characterization of their optical properties. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22(2), 397–401 (2018). https://doi.org/10.19113/sdufbed.58150

    Article  CAS  Google Scholar 

  30. F.H. Alsultany, S.F.H. Alhasan, E.T. Salim, Seed layer-assisted chemical bath deposition of Cu2O nanoparticles on ITO-coated glass substrates with tunable morphology, crystallinity, and optical properties. J. Inorg. Organomet. Polym. 31, 3749–3759 (2021). https://doi.org/10.1007/s10904-021-02016-y

    Article  CAS  Google Scholar 

  31. M.A. Fakhri, M.N.A.K. Alghurabi, F.H. Alsultany, M.H.A. Wahid, Optical and photolumenance studies of deposited CuO2 nano-structures at different laser energies effects. Defect Diffus. Forum 418, 109–118 (2022)

    Article  Google Scholar 

  32. Z.S. Alshaikhli, S.F.H. Alhasan, E.T. Salim, N.A. Parmin, Visible ranges photo detector fabricated based on nano copper oxide deposited by reactive pulsed laser deposition. Defect Diffus. Forum 418, 89–97 (2022)

    Article  Google Scholar 

  33. M.A. Fakhri, S.F.H. Alhasan, M.A. Abduljabbar, Z.S. Alshaikhli, N.A. Parmin, Fabrication of solar cell based on copper oxide nanostructures deposited using reactive pulsed laser deposition. Defect Diffus. Forum 418, 99–107 (2022)

    Article  Google Scholar 

  34. N.R. Dhineshbabu et al., Study of structural and optical properties of cupric oxide nanoparticles. Appl. Nanosci. 6, 933–939 (2016). https://doi.org/10.1007/s13204-015-0499-2

    Article  CAS  ADS  Google Scholar 

  35. P. Xu et al., Preparation of binder-free CuO/Cu 2 O/Cu composites: a novel electrode material for supercapacitor applications. RSC Adv. 6(34), 28270–28278 (2016). https://doi.org/10.1039/C6RA00004E

    Article  CAS  ADS  Google Scholar 

  36. A.D. Faisal, W.K. Kalef, E.T. Salim, F.H. Alsultany, Synthesis of CuO/SnO2 NPs on quartz substrate for temperature sensors application. J Ovonic Res. 18(2), 205–212 (2022)

    Article  CAS  Google Scholar 

  37. P. Sberna et al., Sputtered cuprous oxide thin films and nitrogen doping by ion implantation. Thin Solid Films 600, 71–75 (2016). https://doi.org/10.1016/j.tsf.2016.01.005

    Article  CAS  ADS  Google Scholar 

  38. T.H. Tran, V.T. Nguyen, Phase transition of Cu2O to CuO nanocrystals by selective laser heating. Mater. Sci. Semicond. Process. 46, 6–9 (2016). https://doi.org/10.1016/j.mssp.2016.01.021

    Article  CAS  Google Scholar 

  39. N.J. Shukur, A.K. Ali, E.T. Salim, M.A. Fakhri, Effect of surface treatment on the performance and characterization of DS solar cell. AIP Conf. Proc. 2400, 030019 (2022). https://doi.org/10.1063/5.0112128

    Article  CAS  Google Scholar 

  40. J. Pan, C. Yang, Y. Gao, Investigations of cuprous oxide and cupric oxide thin films by controlling the deposition atmosphere in the reactive sputtering method. Sens. Mater. 5, 8–9 (2016). https://doi.org/10.18494/sam.2016.1298

    Article  Google Scholar 

  41. P. Bindu, S. Thomas, Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phys. 8, 123–134 (2014). https://doi.org/10.1007/s40094-014-0141-9

    Article  ADS  Google Scholar 

  42. H.D. Jabbar, M.J. AbdulRazzaq, M.A. Fakhri, Synthesis porous silicon substrates using electrochemical etching method assisted by laser. AIP Conf. Proc. 2660, 020126 (2022). https://doi.org/10.1063/5.0107762

    Article  CAS  Google Scholar 

  43. Pancarana, I.D., et al. Characteristics of copper coated multi-walled carbon nanotube using electroless plating process. In: International Conference on Science and Technology (ICST 2018). 2018. Atlantis Press, Doi:https://doi.org/10.2991/icst-18.2018.198

  44. Raship, N., et al. Effect of annealing temperature on the properties of copper oxide films prepared by dip coating technique. In: AIP Conference Proceedings. 2017. AIP Publishing, Doi:https://doi.org/10.1063/1.4968374

  45. A.Y. Kudhur, E.T. Salim, I. Kara, R.O. Mahdi, F.H. Alsultany, Applications of Cu2O nanoparticles prepared via various techniques: a review paper. Int. J. Nanoelectron. Mater. 15, 131–137 (2022)

    Google Scholar 

  46. A. Monshi, M.R. Foroughi, M.R. Monshi, Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J. Nano Sci. Eng. 2(3), 154–160 (2012). https://doi.org/10.4236/wjnse.2012.23020

    Article  CAS  ADS  Google Scholar 

  47. A.Y. Kudhur, E.T. Salim, I. Kara, R.O. Mahdi, R.K. Ibrahim, The effect of laser energy on Cu2O nanoparticles formation by liquid-phase pulsed laser ablation. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01319-2

    Article  Google Scholar 

  48. A.Y. Kudhu, E.T. Salim, I. Kara, M.A. Fakhri, R.O. Mahdi, Structural optical and morphological properties of copper oxide nanoparticles ablated using pulsed laser ablation in liquid. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01331-6

    Article  Google Scholar 

  49. E.T. Salim, I.R. Agool, M.A. Muhsien, Construction of SnO2/SiO2/Si heterojunction and its lineup using I-V and C-V measurements. Int. J. Mod. Phys. B 25(29), 3863–3869 (2011). https://doi.org/10.1142/S0217979211102022

    Article  ADS  Google Scholar 

  50. H.H. Kadhim, N. Hasan, A.J. Haider, Characterization of superconductor materials doped with nanoparticles on their properties. J. Appl. Sci. Nanotechnol. 2(3), 18–36 (2022). https://doi.org/10.53293/jasn.2022.4435.1109

    Article  Google Scholar 

  51. W. Zhao et al., Electrodeposition of Cu2O films and their photoelectrochemical properties. CrystEngComm 13(8), 2871–2877 (2011). https://doi.org/10.1039/c0ce00829j

    Article  CAS  Google Scholar 

  52. Hattab, F., Fakhry, M., Optical and structure properties for nano titanium oxide thin film prepared by PLD, 2012 First National Conference for Engineering Sciences (FNCES 2012). Doi: https://doi.org/10.1109/NCES.2012.6740474.

  53. D. Gupta et al., Facile synthesis of Cu2O and CuO nanoparticles and study of their structural, optical and electronic properties. J. Alloys Compd. 743, 737–745 (2018). https://doi.org/10.1016/j.jallcom.2018.01.181

    Article  CAS  Google Scholar 

  54. R.K. Sendi et al., Copper oxide and copper nanoparticles insertion within a PPy matrix for photodetector applications. Opt. Quant. Electron. 55(11), 956 (2023). https://doi.org/10.1007/s11082-023-05226-5

    Article  CAS  Google Scholar 

  55. M.A. Muhsien, E.T. Salim, I.R. Agool, Preparation and characterization of (Au/n-Sn O2 /Si O2 /Si/Al) MIS device for optoelectronic application. Int J Opt 756402, 9 (2013). https://doi.org/10.1155/2013/756402

    Article  CAS  Google Scholar 

  56. V. Vinila et al., X-ray diffraction analysis of nano crystalline ceramic PbBaTiO 3. Cryst. Struct. Theory Appl. 3(03), 57 (2014). https://doi.org/10.4236/csta.2014.33007

    Article  Google Scholar 

  57. S. Rehman et al., Tuning structural and optical properties of copper oxide nanomaterials by thermal heating and its effect on photocatalytic degradation of congo red dye. Iran. J. Chem. Chem. Eng. 41(5), 1549–1560 (2022). https://doi.org/10.1016/j.clce.2022.100003

    Article  CAS  Google Scholar 

  58. T. Evan, Salim, Optoelectronic properties of Fe2O3/Si heterojunction prepared by rapid thermal oxidation method. Indian J. Phys. 87(4), 349–353 (2013). https://doi.org/10.1007/s12648-012-0229-5

    Article  CAS  Google Scholar 

  59. H. Irfan, K. Racik, S. Anand, X-ray peak profile analysis of CoAl2O4 nanoparticles by Williamson-Hall and size-strain plot methods. Modern Electron. Mater. 4(1), 31–40 (2018). https://doi.org/10.3897/j.moem.4.1.33272

    Article  Google Scholar 

  60. H. Shashidharagowda, S.N. Mathad, M.B. Abbigeri, Structural, vibrational and magnetic characterization of copper doped CoMn2O4 nano-particles synthesized by chemical route. Sci. Sinter. 53(4), 429–444 (2021). https://doi.org/10.2298/SOS2104429S

    Article  CAS  Google Scholar 

  61. E.T. Salim, M.S. Al-Wazny, M.A. Fakhri, Glancing angle reactive pulsed laser deposition (GRPLD) for Bi 2O3/Si heterostructure. Mod. Phys. Lett. B 27(16), 1350122 (2013). https://doi.org/10.1142/S0217984913501224

    Article  CAS  ADS  Google Scholar 

  62. A. Sharma et al., Tailoring of structural, optical and electrical properties of anatase TiO2 via doping of cobalt and nitrogen ions. J. Mater. Sci. Technol. 111, 287–297 (2022). https://doi.org/10.1016/j.jmst.2021.09.014

    Article  CAS  Google Scholar 

  63. E.H. Livingston, The mean and standard deviation: what does it all mean? J. Surg. Res. 119(2), 117–123 (2004). https://doi.org/10.1016/j.jss.2004.02.008

    Article  PubMed  Google Scholar 

  64. E.T. Salim, M.A. Fakhri, H. Hassen, Metal oxide nanoparticles suspension for optoelectronic devises fabrication. Int. J. Nanoelectron. Mater. 6(2), 121–128 (2013)

    Google Scholar 

  65. M.A. Muhsien, E.T. Salem, I.R. Agool, H.H. Hamdan, Gas sensing of Au/n-SnO2/p-PSi/c-Si heterojunction devices prepared by rapid thermal oxidation. Appl. Nanosci. 4, 719–732 (2014)

    Article  CAS  ADS  Google Scholar 

  66. M.A.M. Hassan, M.F.H. Al-Kadhemy, E.T. Salem, Effect irradiation time of Gamma ray on MSISM (Au/SnO2/SiO2/Si/Al) devices using theoretical modeling. Int. J. Nanoelectron. Mater. 8(2), 69–82 (2015)

    Google Scholar 

  67. E.T. Salim, Y. Al-Douri, M.S. Al-Wazny, M.A. Fakhri, Optical properties of Cauliflower-like Bi2O3nanostructures by reactive pulsed laser deposition (PLD) technique. Sol. Energy 107, 523–529 (2014). https://doi.org/10.1016/j.solener.2014.05.020

    Article  CAS  ADS  Google Scholar 

  68. M. Kaur et al., Highly sensitive NO2 sensor based on ZnO nanostructured thin film prepared by SILAR technique. Sens. Actuators, B Chem. 335, 129678 (2021). https://doi.org/10.1016/j.snb.2021.129678

    Article  CAS  Google Scholar 

  69. A. Sahai et al., Cu/Cu2O/CuO nanoparticles: Novel synthesis by exploding wire technique and extensive characterization. Appl. Surf. Sci. 390, 974–983 (2016). https://doi.org/10.1016/j.apsusc.2016.09.005

    Article  CAS  ADS  Google Scholar 

  70. M.A. Muhsien, E.T. Salim, Y. Al-Douri, A.F. Sale, I.R. Agool, Synthesis of SnO2 nanostructures employing Nd:YAG laser. Appl. Phys. A 120(2), 725–730 (2015). https://doi.org/10.1007/s00339-015-9249-2

    Article  CAS  ADS  Google Scholar 

  71. K. Reimann, K. Syassen, Raman scattering and photoluminescence in Cu 2 O under hydrostatic pressure. Phys. Rev. B 39(15), 11113 (1989). https://doi.org/10.1103/physrevb.39.11113

    Article  CAS  ADS  Google Scholar 

  72. H.Y.H. Chan, C.G. Takoudis, M.J. Weaver, Oxide film formation and oxygen adsorption on copper in aqueous media as probed by surface-enhanced Raman spectroscopy. J. Phys. Chem. B 103(2), 357–365 (1999). https://doi.org/10.1021/jp983787c

    Article  CAS  Google Scholar 

  73. M.A. Fakhri, Y. Al-Douri, U. Hashim, E.T. Salim, D. Prakash, K.D. Verma, Optical investigation of nanophotonic lithium niobate-based optical waveguide. Appl. Phys. B 121(1), 107–116 (2015). https://doi.org/10.1007/s00340-015-6206-x

    Article  CAS  ADS  Google Scholar 

  74. P.K. Pagare, A. Torane, Band gap varied cuprous oxide (Cu 2 O) thin films as a tool for glucose sensing. Microchim. Acta 183, 2983–2989 (2016). https://doi.org/10.1007/s00604-016-1949-6

    Article  CAS  Google Scholar 

  75. H.D. Aghdam et al., Ablation time and laser fluence impacts on the composition, morphology and optical properties of copper oxide nanoparticles. Opt. Mater. 91, 433–438 (2019). https://doi.org/10.1016/j.optmat.2019.03.027

    Article  CAS  ADS  Google Scholar 

  76. Y.N. Jurn, F. Malek, S.A. Mahmood, W.-W. Liu, M.A. Fakhri, M.H. Salih, Modelling and simulation of rectangular bundle of single-walled carbon nanotubes for antenna applications. Key Eng. Mater. 701, 57–66 (2016). https://doi.org/10.4028/www.scientific.net/KEM.701.57

    Article  Google Scholar 

  77. J. Pavelec et al., Perturbation of water structure by water-polymer interactions probed by FTIR and polarized Raman spectroscopy. J. Mol. Liq. 275, 463–473 (2019). https://doi.org/10.1016/j.molliq.2018.11.023

    Article  CAS  Google Scholar 

  78. H. Jiang, Z. Zheng, X. Wang, Kinetic study of methyltriethoxysilane (MTES) hydrolysis by FTIR spectroscopy under different temperatures and solvents. Vib. Spectrosc. 46(1), 1–7 (2008). https://doi.org/10.1016/j.vibspec.2007.07.002

    Article  CAS  Google Scholar 

  79. Z.T. Salim, U. Hashim, M.K.M. Arshad, M.A. Fakhri, Simulation, fabrication and validation of surface acoustic wave layered sensor based on ZnO/IDT/128° YX LiNBO3. Int. J. Appl. Eng. Res. 11(15), 8785–8790 (2016)

    Google Scholar 

  80. Y. Ghayeb, M. Momeni, M. Menati, Reduced graphene oxide/Cu 2 O nanostructure composite films as an effective and stable hydrogen evolution photocathode for water splitting. J. Mater. Sci. 28, 7650–7659 (2017). https://doi.org/10.1007/s10854-017-6458-9

    Article  CAS  Google Scholar 

  81. P. Raul et al., CuO nanorods: a potential and efficient adsorbent in water purification. RSC Adv. 4, 40580–40587 (2014). https://doi.org/10.1039/c4ra04619f

    Article  CAS  ADS  Google Scholar 

  82. M.A. Fakhri, Y. Al-Douri, U. Hashim, Fabricated optical strip waveguide of nanophotonics lithium niobate. IEEE Photonics J. 8(2), 4500410 (2016). https://doi.org/10.1109/JPHOT.2016.2531583

    Article  CAS  Google Scholar 

  83. M. Salavati-Niasari, D. Ghanbari, M.R. Loghman-Estarki, Star-shaped PbS nanocrystals prepared by hydrothermal process in the presence of thioglycolic acid. Polyhedron 35(1), 149–153 (2012). https://doi.org/10.1016/j.poly.2012.01.010

    Article  CAS  Google Scholar 

  84. Davari, A., et al., Synthesis and characterization of copper oxide nanoparticles using aqueous extract of Iranian violaceae flower. 2021, https://doi.org/10.15673/fst.v15i3.2178

  85. Y.N. Jurn, F. Malek, S.A. Mahmood, W.-W. Liu, E.K. Gbashi, M.A. Fakhri, Important parameters analysis of the single-walled carbon nanotubes composite materials. ARPN J. Eng. Appl. Sci. 11(8), 5108–5113 (2016)

    CAS  Google Scholar 

  86. S.S. Sawant, A.D. Bhagwat, C.M. Mahajan, Synthesis of cuprous oxide (Cu2O) nanoparticles: a review. Жypнaл нaнo-тa eлeктpoннoї фiзики (2016). https://doi.org/10.21272/jnep.8(1).01035

    Article  Google Scholar 

  87. Swarnkar, R., S. Singh, and R. Gopal. Synthesis of copper/copper‐oxide nanoparticles: optical and structural characterizations. In: AIP Conference Proceedings. 2009. American Institute of Physics, https://doi.org/10.1063/1.3183432.

  88. M.A. Fakhri, Y. Al-Douri, E.T. Salim, U. Hashim, Y. Yusof, E.B. Choo, Z.T. Salim, Y.N. Jurn, Structural properties and surface morphology analysis of nanophotonic LINBO3. ARPN J. Eng. Appl. Sci. 11(8), 4974–4978 (2016)

    CAS  Google Scholar 

  89. S. Fouad et al., ALD of TiO2/ZnO mutilayers towards the understanding of optical properties and polarizability. Opt. Laser Technol. 140, 107035 (2021). https://doi.org/10.1016/j.optlastec.2021.107035

    Article  CAS  Google Scholar 

  90. M.A. Fakhri, U. Hashim, E.T. Salim, Z.T. Salim, Preparation and charactrization of photonic LiNbO3generated from mixing of new raw materials using spry pyrolysis method. J. Mater. Sci. 27(12), 13105–13112 (2016). https://doi.org/10.1007/s10854-016-5455-8

    Article  CAS  Google Scholar 

  91. Z.T. Salim, U. Hashim, M.K.M.D. Arshad, M.A. Fakhri, E.T. Salim, Zinc oxide flakes-corolla lobes like nano combined structure for SAW applications. Mater. Res. Bull. 86, 215–219 (2017). https://doi.org/10.1016/j.materresbull.2016.11.015

    Article  CAS  Google Scholar 

  92. Z.T. Salim, U. Hashim, M.K.M.D. Arshad, M.A. Fakhri, E.T. Salim, Frequency-based detection of female Aedes mosquito using surface acoustic wave technology: early prevention of dengue fever. Microelectron. Eng. 179, 83–90 (2017). https://doi.org/10.1016/j.mee.2017.04.016

    Article  CAS  Google Scholar 

  93. A.Y. Fasasi et al., Effect of precursor solvents on the optical properties of copper oxide thin films deposited using spray pyrolysis for optoelectronic applications. Am. J. Mater. Synth. Process 3(2), 12–22 (2018). https://doi.org/10.11648/j.ajmsp.20180302.12

    Article  Google Scholar 

  94. A. Shabaev, A.L. Efros, A. Nozik, Multiexciton generation by a single photon in nanocrystals. Nano Lett. 6(12), 2856–2863 (2006). https://doi.org/10.1021/nl062059v

    Article  CAS  PubMed  ADS  Google Scholar 

  95. M.A. Fakhri, E.T. Salim, M.H.A. Wahid, U. Hashim, Z.T. Salim, R.A. Ismail, Synthesis and characterization of nanostructured LiNbO3 films with variation of stirring duration. J. Mater. Sci. 28(16), 11813–11822 (2017). https://doi.org/10.1007/s10854-017-6989-0

    Article  CAS  Google Scholar 

  96. F.A. Akgul et al., Influence of thermal annealing on microstructural, morphological, optical properties and surface electronic structure of copper oxide thin films. Mater. Chem. Phys. 147(3), 987–995 (2014). https://doi.org/10.1016/j.matchemphys.2014.06.047

    Article  CAS  Google Scholar 

  97. Liu, Z., et al. Preparation of Cu2O Particles and their Photocatalytic Properties. In: IOP Conference Series: Earth and Environmental Science. 2020. IOP Publishing, https://doi.org/10.1088/1755-1315/453/1/012084

  98. E.T. Salim, J.A. Saimon, M.K. Abood, M.A. Fakhri, Some physical properties of Nb2O5 thin films prepared using nobic acid based colloidal suspension at room temperature. Mater. Res. Express 4(10), 106407 (2017). https://doi.org/10.1088/2053-1591/aa90a6

    Article  CAS  ADS  Google Scholar 

  99. H. Shi et al., Controllable synthesis of novel Cu 2 O micro/nano-crystals and their photoluminescence, photocatalytic and field emission properties. CrystEngComm 14(1), 278–285 (2012). https://doi.org/10.1039/c1ce05868a

    Article  CAS  Google Scholar 

  100. S. Jana, P.K. Biswas, Optical characterization of in-situ generated Cu2O excitons in solution derived nano-zirconia film matrix. Mater. Lett. 32(4), 263–270 (1997). https://doi.org/10.1016/s0167-577x(97)00044-x

    Article  CAS  Google Scholar 

  101. M.A. Fakhri, M. Halim, A. Wahid, B.A. Badr, E.T. Salim, U. Hashim, Z.T. Salim, Enhancement of Lithium Niobate nanophotonic structures via spin-coating technique for optical waveguides application. Eur. Phys. J. Conf. 162(7), 01004 (2017). https://doi.org/10.1051/epjconf/201716201004

    Article  CAS  Google Scholar 

  102. F. Plascencia-Hernández et al., Cu2O cubic and polyhedral structures versus commercial powder: shape effect on photocatalytic activity under visible light. J. Saudi Chem. Soc. 23(8), 1016–1023 (2019). https://doi.org/10.1016/j.jscs.2019.05.007

    Article  CAS  Google Scholar 

  103. Li, K., et al. Plasmonic Hot Carrier Transfer Modulated Room–Temperature Visible Light Emission of Cu2O–Au Nanowires. In: Journal of Physics: Conference Series. 2020. IOP Publishing, https://doi.org/10.1088/1742-6596/1575/1/012162.

  104. M.A. Fakhri, M. Halim, A. Wahid, S.M. Kadhim, B.A. Badr, E.T. Salim, U. Hashim, Z.T. Salim, The structure and optical properties of Lithium Niobate grown on quartz for photonics application. Eur. Phys. J. Conf. 162, 01005 (2017). https://doi.org/10.1051/epjconf/201716201005

    Article  CAS  Google Scholar 

  105. H. Ding et al., Solvent-controlled synthesis of highly luminescent carbon dots with a wide color gamut and narrowed emission peak widths. Small 14(22), 1800612 (2018). https://doi.org/10.1002/smll.201800612

    Article  CAS  Google Scholar 

  106. S. Liu, Y. Wang, Application of AFM in microbiology: a review. Scanning 32(2), 61–73 (2010). https://doi.org/10.1002/sca.20173

    Article  CAS  PubMed  Google Scholar 

  107. Y. Al-Douri, M.A. Fakhri, A. Bouhemadou, R. Khenata, M. Ameri, Stirrer time effect on optical properties of nanophotonic LiNbO3. Mater. Chem. Phys. 203, 243–248 (2018). https://doi.org/10.1016/j.matchemphys.2017.10.024

    Article  CAS  Google Scholar 

  108. M.A. Fakhri, H.D. Jabbar, M.J. AbdulRazzaq, ...R.K. Ibrahim, R.A. Ismail, Effect of laser fluence on the optoelectronic properties of nanostructured GaN/porous silicon prepared by pulsed laser deposition. Sci. Rep. 13(1), 21007 (2023). https://doi.org/10.1038/s41598-023-47955-3

  109. Y. Al-Douri, M.A. Fakhri, N. Badi, C.H. Voon, Effect of stirring time on the structural parameters of nanophotonic LiNbO3 deposited by spin-coating technique. Optik 156, 886–890 (2018). https://doi.org/10.1016/j.ijleo.2017.12.059

    Article  CAS  ADS  Google Scholar 

  110. Huang, G., C.-H. Lu, and H.-H. Yang, Magnetic nanomaterials for magnetic bioanalysis, In: Novel nanomaterials for biomedical, environmental and energy applications. 2019, Elsevier. pp. 89–109, https://doi.org/10.1016/b978-0-12-814497-8.00003-5.

  111. S. Choopun et al., Oxygen pressure-tuned epitaxy and optoelectronic properties of laser-deposited ZnO films on sapphire. Appl. Phys. Lett. 75(25), 3947–3949 (1999). https://doi.org/10.1063/1.125503

    Article  CAS  ADS  Google Scholar 

  112. M.A. Fakhri, Y. Al-Douri, A. Bouhemadou, M. Ameri, Structural and optical properties of nanophotonic LiNbO 3 under stirrer time effect. J. Opt. Commun. 39(3), 297–306 (2017). https://doi.org/10.1515/joc-2016-0159

    Article  Google Scholar 

  113. A.H. Shukur, Structural, photo-functional and semiconductor properties of copper oxide thin films prepared by dc reactive method under various thicknesses. Kufa J. Eng. 9(1), 133–142 (2018). https://doi.org/10.30572/2018/kje/090109

    Article  Google Scholar 

  114. G. Korotcenkov, The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater. Sci. Eng. R. Rep. 61(1–6), 1–39 (2008). https://doi.org/10.1016/j.mser.2008.02.001

    Article  CAS  Google Scholar 

  115. M.A. Fakhri, N.H. Numan, Q.Q. Mohammed, M.S. Abdulla, O.S. Hassan, S.A. Abduljabar, A.A. Ahmed, Responsivity and Response Time of Nano Silver Oxide on Silicon Heterojunction Detector. Int. J. Nanoelectron. Mater. 11(21), 109–114 (2018)

    Google Scholar 

  116. K. Govender et al., Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution. J. Mater. Chem. 14(16), 2575–2591 (2004). https://doi.org/10.1039/b404784b

    Article  CAS  Google Scholar 

  117. A.A. Virkar et al., Organic semiconductor growth and morphology considerations for organic thin-film transistors. Adv. Mater. 22(34), 3857–3875 (2010). https://doi.org/10.1002/adma.200903193

    Article  CAS  PubMed  Google Scholar 

  118. M.A. Fakhri, N.H. Numan, Q.Q. Mohammed, M.S. Abdulla, O.S. Hassan, S.A. Abduljabar, A.A. Ahmed, Responsivity and response time of nano silver oxide on silicon heterojunction detector. Int. J. Nanoelectron. Mater. 11(21), 65–72 (2018)

    Google Scholar 

  119. J.-Y. Ho, M.H. Huang, Synthesis of submicrometer-sized Cu2O crystals with morphological evolution from cubic to hexapod structures and their comparative photocatalytic activity. J. Phys. Chem. C 113(32), 14159–14164 (2009). https://doi.org/10.1021/jp903928p

    Article  CAS  Google Scholar 

  120. B. Li et al., One-step green synthesis of cuprous oxide crystals with truncated octahedra shapes via a high pressure flux approach. J. Solid State Chem. 184(8), 2097–2102 (2011). https://doi.org/10.1016/j.jssc.2011.05.049

    Article  CAS  ADS  Google Scholar 

  121. M.K. Abood, M.H.A. Wahid, J.A. Saimon, E.T. Salim, Int. J. Nanoelectron. Mater. 11(21), 237–244 (2018)

    Google Scholar 

  122. M.C. Mevada, B. Sengupta, Effect of temperature and precursor concentration on morphology of copper oxide synthesized on glass substrates via hydrothermal method. Int. J. Sci. Technol. Eng 3, 6–11 (2017). https://doi.org/10.1063/1.5010448

    Article  CAS  Google Scholar 

  123. J.L. Elechiguerra, J. Reyes-Gasga, M.J. Yacaman, The role of twinning in shape evolution of anisotropic noble metal nanostructures. J. Mater. Chem. 16(40), 3906–3919 (2006). https://doi.org/10.1039/b607128g

    Article  CAS  Google Scholar 

  124. M.A. Fakhri, B.A. Bader, F.G. Khalid, N.H. Numan, A.W. Abdulwahhab, U. Hashim, E.T. Salim, M.A. Munshid, Z.T. Salim, Optical and morphological studies of LiNbO3 nano and micro photonic structural. AIP Conf. Proc. 20, 020017 (2018). https://doi.org/10.1063/1.5080830

    Article  CAS  Google Scholar 

  125. T.J. Slade et al., Understanding the thermally activated charge transport in NaPb m SbQ m+ 2 (Q= S, Se, Te) thermoelectrics: weak dielectric screening leads to grain boundary dominated charge carrier scattering. Energy Environ. Sci. 13(5), 1509–1518 (2020). https://doi.org/10.1039/d0ee00491j

    Article  CAS  Google Scholar 

  126. M.M. Ibrahim, M.A. Hassan, K.I. Hassoon, Characterization of FeS2 thin film prepared by spray pyrolysis method for optoelectronic applications. J. Appl. Sci. Nanotechnol. 2(3), 78–84 (2022). https://doi.org/10.53293/jasn.2022.3961.1115

    Article  Google Scholar 

  127. D.A. Mohammed, A. Kadhim, M.A. Fakhri, The enhancement of the corrosion protection of 304 stainless steel using Al2O3films by PLD method. AIP Conf. Proc. 2045(1), 020014 (2018). https://doi.org/10.1063/1.5080827

    Article  CAS  Google Scholar 

  128. M. Gillet et al., The role of surface oxygen vacancies upon WO3 conductivity. Surf. Sci. 532, 519–525 (2003). https://doi.org/10.1016/s0039-6028(03)00477-1

    Article  ADS  Google Scholar 

  129. H. Mahamoud et al., Conductivity and dielectric studies on (Na 0· 4 Ag 0· 6) 2 PbP 2 O 7 compound. Bull. Mater. Sci. 34, 1069–1075 (2011). https://doi.org/10.1007/s12034-011-0163-8

    Article  CAS  Google Scholar 

  130. H.T. Halboos, E.T. Salim, SD Niobium (2018) Pentoxide nanostructured thin film, optical structural and morphological properties. IOP Conf. Ser. Mater. Sci. Eng. 454(1), 012174 (2018). https://doi.org/10.1088/1757-899X/454/1/012174

    Article  Google Scholar 

  131. M.S. Al-Wazny, E.T. Salim, BA Bader and MA Fakhry (2018) Synthesis of Bi2O3 films, studying their optical, structural, and surface roughness properties. IOP Conf. Seri. Mater. Sci. Eng. 454(1), 012160 (2018). https://doi.org/10.1088/1757-899X/454/1/012160

    Article  Google Scholar 

  132. E.T. Salim, J.A. Saimon, M.K. Abood, M.A. Fakhri, Electrical conductivity inversion for Nb2O5 nanostructure thin films at different temperatures. Mater. Res. Express 6(12), 126459 (2019). https://doi.org/10.1088/2053-1591/ab771c

    Article  CAS  Google Scholar 

  133. A. Linsebigler, G. Lu, J.T. Yates Jr., CO chemisorption on TiO2 (110): oxygen vacancy site influence on CO adsorption. J. Chem. Phys. 103(21), 9438–9443 (1995). https://doi.org/10.1063/1.470005

    Article  CAS  ADS  Google Scholar 

  134. J. Gunjakar et al., Chemical synthesis of spinel nickel ferrite (NiFe2O4) nano-sheets. Appl. Surf. Sci. 254(18), 5844–5848 (2008). https://doi.org/10.1016/j.apsusc.2008.03.065

    Article  CAS  ADS  Google Scholar 

  135. M.A. Fakhri, E.T. Salim, M.H.A. Wahid, A.W. Abdulwahhab, U. Hashim, Z.T. Salim, Efficiency enhancement of optical strip waveguide by the effect of heat treatment. Optik 180, 768–774 (2019). https://doi.org/10.1016/j.ijleo.2018.12.006

    Article  CAS  ADS  Google Scholar 

  136. R. Schropp, A. Madan, Properties of conductive zinc oxide films for transparent electrode applications prepared by rf magnetron sputtering. J. Appl. Phys. 66(5), 2027–2031 (1989). https://doi.org/10.1063/1.344341

    Article  CAS  ADS  Google Scholar 

  137. B.A. Badr, N.H. Numan, F.G. Khalid, M.A. Fakhri, A.W. Abdulwahhab, Effetcts of substrate temperatures on optical properties and constants of ZnO prepared by PLD. J. Ovonic Res. 15(2), 127–133 (2019)

    Google Scholar 

  138. S.M. Taleb, M.A. Fakhri, S.A. Adnan, Physical investigations of nanophotonic LiNbO3 films for photonic applications. J. Ovonic Res. 15(4), 261–269 (2019)

    CAS  Google Scholar 

  139. B.A. Badr, Q.Q. Mohammed, N.H. Numan, M.A. Fakhri, A.W. Abdul Wahhab, Substrate temperature effects on optical properties and constants of ZnO. Int. J. Nanoelectron. Mater. 12(3), 283–290 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the department of laser engineering and electro- optic /university of Technology for the logistic support this work.

Funding

No fund has been received for this research study.

Author information

Authors and Affiliations

Authors

Contributions

ETS, ROM conceived of the presented idea. ETS, ROM supervised the finding of this work. RAA, ETS, ROM discussed the results and contributed equally to the final manuscript. RAA conducted the experiments. RAA, ETS, ROM provided critical feedback and helped shape the research, analysis and manuscript.

Corresponding author

Correspondence to Evan T. Salim.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Consent for publication

Not applicable.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, R.A., Salim, E.T. & Mahdi, R.O. Deposition time effect on copper oxide nano structures, an analysis study using chemical method. J Mater Sci: Mater Electron 35, 427 (2024). https://doi.org/10.1007/s10854-024-12143-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12143-0

Navigation