Skip to main content
Log in

Effect of graphene nanoplates and multi-walled carbon nanotubes doping on structural and optical properties of polyvinyl chloride membranes for outdoor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Incorporation of different ratios (0, 0.25, 0.5, 0.75, and 1 wt%) of graphene nanoplates (GNPs) or multi-wall carbon nanotubes (MWCNTs) within polyvinylchloride (PVC) via casting method has been examined to improve their structural and linear/nonlinear optical performance. The structural study was carried out using an AFM, FTIR, FE-SEM, and XRD. Different surface and intermolecular structural modifications are induced depending on the dispersed nano-filler type in the PVC matrix. FTIR analysis revealed the disappearance of the –OH and C–H bands accompanied by the appearance of new bands related to the C=O and C–O stretching modes with different intensities for PVC/GNPs and PVC/MWCNTs nanocomposites. The linear and nonlinear optical measurements were performed using a double-beam spectrophotometer and the optoelectronic parameters were deduced from the transmission and reflectance spectra. Optical parameters and constants such as the direct and indirect energy gap, single oscillator energy, dispersion energy, ratio of carrier concentration to its effective mass, lattice and infinite frequency dielectric constant, the linear/nonlinear refractive index, and the third-order susceptibility, based on the types and concentrations of the dispersed GNPs or MWCNTs in the PVC matrix are discussed. The solar skin protection factor (SSPF) of PVC/GNPs nanocomposite with 1 wt% of GNPs increased from 0.7 to 13.5%, while the same MWCNTs contents increased SSPF factor to 11.9%. The calculated optical parameters were found to be GNPs and/or MWCNTs wt% dependent due to their different individual properties and geometry. The present work revealed a guide for tuning the PVC optical properties using both types of nano-filler for usage in flexible optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data presented in this study are available from the corresponding author upon reasonable request.

References

  1. K.F. Amin, Asrafuzzaman, A.M. Nahin, M.E. Hoque, Polymer nanocomposites for adhesives and coatings, in: Advanced Polymer Nanocomposites, ed. by M.E. Hoque, K. Ramar, A. Sharif (Woodhead Publishing, Cambridge, 2022), pp. 235–265.

  2. A.A. Kareem, A.R. Polu, H.K. Rasheed, T. Alomayri, Effect of silver nanoparticles on structural, thermal, electrical, and mechanical properties of poly (vinyl alcohol) polymer nanocomposites. Polym. Compos. 44(6), 3281–3287 (2023)

    CAS  Google Scholar 

  3. A. Al-Muntaser, H.M. Abo-Dief, A. Tarabiah, E. Alzahrani, H.A. Alsalmah, Z.M. Alharbi, R.A. Pashameah, A. Saeed, Incorporated TiO2 nanoparticles into PVC/PMMA polymer blend for enhancing the optical and electrical/dielectric properties: hybrid nanocomposite films for flexible optoelectronic devices. Polym. Eng. Sci. 63(11), 3684–3697 (2023)

    CAS  Google Scholar 

  4. N. Baig, I. Kammakakam, W. Falath, Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2(6), 1821–1871 (2021)

    Google Scholar 

  5. S. Fu, Z. Sun, P. Huang, Y. Li, N. Hu, Some basic aspects of polymer nanocomposites: a critical review. Nano Mater. Sci. 1(1), 2–30 (2019)

    Google Scholar 

  6. E. Akram, A. Rashad, M. Ali, K. Zainulabdeen, B. Jasim, S. Mohammed, R. Yusop, A. Al-Amiery, E. Yousif, Ionic liquids: a new generation of efficient polyvinyl chloride thermal stabilizers. J. Umm Al-Qura Univ. Appl. Sci. (2023). https://doi.org/10.1007/s43994-023-00070-5

    Article  Google Scholar 

  7. M. Morsi, R.A. Pashameah, K. Sharma, E. Alzahrani, M. Farea, A. Al-Muntaser, Hybrid MWCNTs/Ag nanofiller reinforced PVP/CMC blend-based polymer nanocomposites for multifunctional optoelectronic and nanodielectric applications. J. Polym. Environ. 31(2), 664–676 (2023)

    CAS  Google Scholar 

  8. M.A. Khan, N. Shakeel, M.I. Ahamed, A. Khan, N. Anwar, Fundamentals of photoelectrochemical bioanalysis, in Photoelectrochemical Bioanalysis. ed. by M. Altaf, R.S. Ashraf, M. Sohail (Elsevier, Amsterdam, 2023), pp.1–22

    Google Scholar 

  9. E.T. Abdullah, O.A. Ibrahim, Capacitance and resistivity measurements of polythiophene/metallic nanoparticles-based humidity sensors. Iraq. J. Sci. 62(4), 1158–1163 (2021)

    Google Scholar 

  10. Al-Taa’y, et al., Studies on surface morphology and electrical conductivity of PS thin films in presence of divalent complexes. Baghdad Sci. J. 16(3), 0588 (2019).

  11. H. Moradi, P. Parvin, F. Shahi, A. Ojaghloo, Fiber optic Fabry-Pérot acoustic sensor using PVC and GO diaphragms. OSA Contin. 3(4), 943–951 (2020)

    Google Scholar 

  12. S.M. Kassem, M.I.A. Abdel Maksoud, A.M. El Sayed, S. Ebraheem, A.I. Helal, Y.Y. Ebaid, Optical and radiation shielding properties of PVC/BiVO4 nanocomposite. Sci. Rep. 13(1), 10964 (2023)

  13. E.M. Sadek, N.A. Mansour, S.M. Ahmed, S.L. Abd-El-Messieh, D. El-Komy, Synthesis, characterization and applications of poly(vinyl chloride) nanocomposites loaded with metal oxide nanoparticles. Polym. Bull. 78(10), 5481–5502 (2021)

    CAS  Google Scholar 

  14. A.F.A. Naim, H. AlFannakh, S. Arafat, S.S. Ibrahim, Characterization of PVC/MWCNTs nanocomposite: solvent blend. Sci. Eng. Compos. Mater. 27(1), 55–64 (2019)

    Google Scholar 

  15. A.A. Ebnalwaled, A. Thabet, Controlling the optical constants of PVC nanocomposite films for optoelectronic applications. Synth. Met. 220, 374–383 (2016)

    CAS  Google Scholar 

  16. A.F. Al-Shawabkeh, Z.M. Elimat, K.N. Abushgair, Effect of non-annealed and annealed ZnO on the optical properties of PVC/ZnO nanocomposite films. J. Thermoplast. Compos. Mater. 36(3), 899–915 (2023)

    CAS  Google Scholar 

  17. T.K. Gupta, S. Kumar, Fabrication of carbon nanotube/polymer nanocomposites, in Carbon Nanotube-Reinforced Polymers. ed. by R. Rafiee (Elsevier, Amsterdam, 2018), pp.61–81

    Google Scholar 

  18. S. Omran, E. Abdullah, O. Al-Zuhairi, Polyvinylpyrrolidone/multi-walled carbon nanotubes/graphene nanocomposite as gas sensor. Iraq. J. Sci. 63(9), 3719–3726 (2022)

    Google Scholar 

  19. S. Berber, Y.-K. Kwon, D. Tománek, Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84(20), 4613–4616 (2000)

    ADS  CAS  PubMed  Google Scholar 

  20. D. Li, Y. Liu, B. Lin, C. Lai, Y. Sun, H. Yang, X. Zhang, Synthesis of ternary graphene/molybdenum oxide/poly(p-phenylenediamine) nanocomposites for symmetric supercapacitors. RSC Adv. 5(119), 98278–98287 (2015)

    ADS  CAS  Google Scholar 

  21. X. Wu, Y. Han, X. Zhang, C. Lu, Highly sensitive, stretchable, and wash-durable strain sensor based on ultrathin conductive layer@polyurethane yarn for tiny motion monitoring. ACS Appl. Mater. Interfaces 8(15), 9936–9945 (2016)

    CAS  PubMed  Google Scholar 

  22. T.K. Gupta, B.P. Singh, R.B. Mathur, S.R. Dhakate, Multi-walled carbon nanotube–graphene–polyaniline multiphase nanocomposite with superior electromagnetic shielding effectiveness. Nanoscale 6(2), 842–851 (2014)

    ADS  CAS  PubMed  Google Scholar 

  23. M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon nanotubes: present and future commercial applications. Science 339(6119), 535–539 (2013)

    ADS  PubMed  Google Scholar 

  24. H.-C. Hsu, C.-H. Wang, S.K. Nataraj, H.-C. Huang, H.-Y. Du, S.-T. Chang, L.-C. Chen, K.-H. Chen, Stand-up structure of graphene-like carbon nanowalls on CNT directly grown on polyacrylonitrile-based carbon fiber paper as supercapacitor. Diam. Relat. Mater. 25, 176–179 (2012)

    ADS  CAS  Google Scholar 

  25. V.B. Mohan, K.-T. Lau, D. Hui, D. Bhattacharyya, Graphene-based materials and their composites: a review on production, applications and product limitations. Compos. B Eng. 142, 200–220 (2018)

    CAS  Google Scholar 

  26. E. Heydari-Bafrooei, A.A. Ensafi, Typically used carbon-based nanomaterials in the fabrication of biosensors, in Electrochemical Biosensors. ed. by A.A. Ensafi (Elsevier, Amsterdam, 2019), pp.77–98

    Google Scholar 

  27. W. Lv, Z. Li, Y. Deng, Q.-H. Yang, F. Kang, Graphene-based materials for electrochemical energy storage devices: Opportunities and challenges. Energy Stor. Mater. 2, 107–138 (2016)

    ADS  Google Scholar 

  28. S.K. Kumar, B.C. Benicewicz, R.A. Vaia, K.I. Winey, 50th anniversary perspective: are polymer nanocomposites practical for applications? Macromolecules 50(3), 714–731 (2017)

    ADS  CAS  Google Scholar 

  29. N. Mohammadipour Saadatabadi, M.R. Nateghi, M. Borhani Zarandi, Determination of the dispersive optical constants of the poly(vinyl chloride) transparent nanocomposite layers containing nanosilver intercalated graphene. Polym. Sci. Ser. A 57(4), 480–488 (2015)

  30. E. Abdel-Fattah, A.I. Alharthi, T. Fahmy, Spectroscopic, optical and thermal characterization of polyvinyl chloride-based plasma-functionalized MWCNTs composite thin films. Appl. Phys. A 125(7), 475 (2019)

    ADS  Google Scholar 

  31. R.M. Ahmed, M.M. Atta, E.O. Taha, Optical spectroscopy, thermal analysis, and dynamic mechanical properties of graphene nano-platelets reinforced polyvinylchloride. J. Mater. Sci. Mater. Electron. 32(17), 22699–22717 (2021)

    CAS  Google Scholar 

  32. P. Rani, M.B. Ahamed, K. Deshmukh, Significantly enhanced electromagnetic interference shielding effectiveness of montmorillonite nanoclay and copper oxide nanoparticles based polyvinylchloride nanocomposites. Polym. Test. 91, 106744 (2020)

    CAS  Google Scholar 

  33. M. Baibarac, L. Stingescu, M. Stroe, C. Negrila, E. Matei, L.C. Cotet, I. Anghel, I.E. Şofran, L. Baia, Poly (vinyl chloride) spheres coated with graphene oxide sheets: from synthesis to optical properties and their applications as flame-retardant agents. Polymers 13(4), 565 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. A. Hassena, S. El-Sayed, W. Morsi, A. El Sayed, Preparation, dielectric and optical properties of Cr2O3/PVC nanocomposite films. J. Adv. Phys. 4(3), 571–584 (2014)

    Google Scholar 

  35. H. Haruna, M.E. Pekdemir, A. Tukur, M. Coşkun, Characterization, thermal and electrical properties of aminated PVC/oxidized MWCNT composites doped with nanographite. J. Therm. Anal. Calorim. 139, 3887–3895 (2020)

    CAS  Google Scholar 

  36. A. Badawi, S.S. Alharthi, M.G. Althobaiti, A.N. Alharbi, The effect of iron oxide content on the structural and optical parameters of polyvinyl alcohol/graphene nanocomposite films. J. Vinyl Addit. Technol. 28(1), 235–246 (2022)

    CAS  Google Scholar 

  37. N. Ahmad, A. Kausar, B. Muhammad, Perspectives on polyvinyl chloride and carbon nanofiller composite: a review. Polym. Plast. Technol. Eng. 55(10), 1076–1098 (2016)

    CAS  Google Scholar 

  38. E. Francis, L. Zhai, H.C. Kim, R. Ramachandran, G. Amarendra, G. Balerao, N. Kalarikkal, K. Varughese, J. Kim, S. Thomas, Morphology correlated free volume studies of multi-walled carbon nanotube plasticized poly (vinyl chloride) nanocomposites: positronium probes and electrical properties. Polymer 141, 232–243 (2018)

    CAS  Google Scholar 

  39. S. Mallakpour, A. Abdolmaleki, F. Azimi, Ultrasonic-assisted biosurface modification of multi-walled carbon nanotubes with thiamine and its influence on the properties of PVC/Tm-MWCNTs nanocomposite films. Ultrason. Sonochem. 39, 589–596 (2017)

    CAS  PubMed  Google Scholar 

  40. B.B. Doudou, I. Chiba, H.S. Daoues, Optical and thermo-optical properties of polyvinyl alcohol/carbon nanotubes composites investigated by prism coupling technique. Opt. Mater. 131, 112672 (2022)

    Google Scholar 

  41. A. Helal, S. Vshivkov, M. Zaki, S.I. Elkalashy, T. Soliman, Effect of carbon nano tube in the structural and physical properties of polyvinyl chloride films. Phys. Scr. 96(8), 085804 (2021)

    ADS  Google Scholar 

  42. Y. Gao, X. Gao, J. Li, S. Guo, Improved microwave absorbing property provided by the filler’s alternating lamellar distribution of carbon nanotube/carbonyl iron/poly (vinyl chloride) composites. Compos. Sci. Technol. 158, 175–185 (2018)

    CAS  Google Scholar 

  43. C. Mahmoudi, E. Demirel, Y. Chen, Investigation of characteristic and performance of polyvinyl chloride ultrafiltration membranes modified with silica-oriented multi walled carbon nanotubes. J. Appl. Polym. Sci. 137(45), 49397 (2020)

    CAS  Google Scholar 

  44. A. El-Naggar, Z.K. Heiba, A. Kamal, M.B. Mohamed, Optical and dielectric behaviors of polyvinyl chloride incorporated with MgFe2O4/MWCNTs. Diam. Relat. Mater. 138, 110243 (2023)

    ADS  CAS  Google Scholar 

  45. A. Abdullah, L. Alwan, A. Ahmed, R. Abed, Optical and physical properties for the nanocomposite poly (vinyl chloride) with affected of carbon nanotube and nano carbon. Prog. Color Color. Coat. 16(4), 331–345 (2023)

    CAS  Google Scholar 

  46. M.A. Hussein, M. Alam, A.M. Asiri, Z.M. Al-amshany, K.S. Hajeeassa, M.M. Rahman, Ultrasonic-assisted fabrication of polyvinyl chloride/mixed graphene–carbon nanotube nanocomposites as a selective Ag+ ionic sensor. J. Compos. Mater. 53(16), 2271–2284 (2019)

    ADS  CAS  Google Scholar 

  47. V. Özkan, A. Yapici, M. Karaaslan, O. Akgöl, Electromagnetic scattering properties of MWCNTs/graphene doped epoxy layered with PVC nanofiber/E-glass composites. J. Electron. Mater. 49, 2249–2256 (2020)

    ADS  Google Scholar 

  48. M. Hasan, A.N. Banerjee, M. Lee, Enhanced thermo-optical performance and high BET surface area of graphene@PVC nanocomposite fibers prepared by simple facile deposition technique: N2 adsorption study. J. Ind. Eng. Chem. 21, 828–834 (2015)

    CAS  Google Scholar 

  49. R.N. Abed, E. Yousif, A.R.N. Abed, A.A. Rashad, A. Hadawey, A.H. Jawad, Optical properties of PVC composite modified during light exposure to give high absorption enhancement. J. Non-Cryst. Solids 570, 120946 (2021)

    CAS  Google Scholar 

  50. B. Alshahrani, H.I. ElSaeedy, S. fares, A.H. Korna, H.A. Yakout, A.H. Ashour, M.I.A. Abdel Maksoud, R.A. Fahim, A.S. Awed, Revealing the effect of gamma irradiation on structural, ferromagnetic resonance, optical, and dispersion properties of PVC/Mn0.5Zn0.5Fe2O4 nanocomposite films. Opt.Mater. 118, 111216 (2021)

  51. M. Rashad, A.M. Abd-Elnaiem, T.A. Hanafy, N.M. Shaalan, A.M.A. Shamekh, Optical properties of functional Al2O3 nano-filler in eco-friendly PVA polymer for flexible optoelectronic devices. Opt. Mater. 141, 113990 (2023)

    CAS  Google Scholar 

  52. M. Hasan, M. Lee, Enhancement of the thermo-mechanical properties and efficacy of mixing technique in the preparation of graphene/PVC nanocomposites compared to carbon nanotubes/PVC. Prog. Nat. Sci. Mater. Int. 24(6), 579–587 (2014)

    CAS  Google Scholar 

  53. M. Liu, M. Jia, Y. E, D. Li, A novel ion selective electrode based on reduced graphene oxide for potentiometric determination of sarafloxacin hydrochloride. Microchem. J. 170, 106678 (2021)

  54. F. Kazemi, Y. Jafarzadeh, S. Masoumi, M. Rostamizadeh, Oil-in-water emulsion separation by PVC membranes embedded with GO–ZnO nanoparticles. J. Environ. Chem. Eng. 9(1), 104992 (2021)

    CAS  Google Scholar 

  55. S. Khakpour, Y. Jafarzadeh, R. Yegani, Incorporation of graphene oxide/nanodiamond nanocomposite into PVC ultrafiltration membranes. Chem. Eng. Res. Des. 152, 60–70 (2019)

    CAS  Google Scholar 

  56. R.M. Ahmed, A.A. Ibrahiem, A.S. El-Bayoumi, M.M. Atta, Structural, mechanical, and dielectric properties of polyvinylchloride/graphene nano platelets composites. Int. J. Polym. Anal. Charact. 26(1), 68–83 (2021)

    CAS  Google Scholar 

  57. J. Joseph, K. Deshmukh, K. Chidambaram, M. Faisal, E. Selvarajan, K.K. Sadasivuni, M.B. Ahamed, S.K.K. Pasha, Dielectric and electromagnetic interference shielding properties of germanium dioxide nanoparticle reinforced poly(vinyl chloride) and poly(methylmethacrylate) blend nanocomposites. J. Mater. Sci. Mater. Electron. 29(23), 20172–20188 (2018)

    CAS  Google Scholar 

  58. Z. Li, L. Deng, I.A. Kinloch, R.J. Young, Raman spectroscopy of carbon materials and their composites: graphene, nanotubes and fibres. Prog. Mater. Sci. 135, 101089 (2023)

    CAS  Google Scholar 

  59. L. Qiu, Y. Chen, Y. Yang, L. Xu, X. Liu, A study of surface modifications of carbon nanotubes on the properties of polyamide 66/multiwalled carbon nanotube composites. J. Nanomater. 2013, 252417 (2013)

    Google Scholar 

  60. M.A. Al-Harthi, M. Hussain, Effect of the Surface Functionalization of graphene and MWCNT on the thermodynamic, mechanical and electrical properties of the graphene/MWCNT-PVDF nanocomposites. Polymers (Basel) 14(15), 2976 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  61. A. Fraczek-Szczypta, E. Menaszek, T.B. Syeda, A. Misra, M. Alavijeh, J. Adu, S. Blazewicz, Effect of MWCNT surface and chemical modification on in vitro cellular response. J. Nanopart. Res. 14(10), 1181 (2012)

    ADS  PubMed  PubMed Central  Google Scholar 

  62. H. Sadegh, K. Zare, B. Maazinejad, R. Shahryari-ghoshekandi, I. Tyagi, S. Agarwal, V.K. Gupta, Synthesis of MWCNT-COOH-Cysteamine composite and its application for dye removal. J. Mol. Liq. 215, 221–228 (2016)

    CAS  Google Scholar 

  63. I.S. Sandhu, M. Chitkara, S. Rana, G. Dhillon, A. Taneja, S. Kumar, Photocatalytic performances of stand-alone graphene oxide (GO) and reduced graphene oxide (rGO) nanostructures. Opt. Quant. Electron. 52(7), 359 (2020)

    CAS  Google Scholar 

  64. M. Todica, T. Stefan, S. Simon, I. Balasz, L. Daraban, UV-Vis and XRD investigation of graphite-doped poly(acrylic) acid membranes. Turk. J. Phys. 38(2), 261–267 (2014)

    CAS  Google Scholar 

  65. T.N. Ghosh, S.S. Pradhan, S.K. Sarkar, A.K. Bhunia, On the incorporation of the various reduced graphene oxide into poly(vinyl alcohol) nano-compositions: comparative study of the optical, structural properties and magnetodielectric effect. J. Mater. Sci. Mater. Electron. 32(14), 19157–19178 (2021)

    CAS  Google Scholar 

  66. A.M.A. Shamekh, N.M. Shaalan, T.A. Hanafy, M. Rashad, Linear/nonlinear optical properties of functional inorganic MgO nano-filler in PVA transparent polymer for flexible optoelectronic devices. Physica B 651, 414617 (2023)

    CAS  Google Scholar 

  67. A.J. Sadiq, E.S. Awad, K.M. Shabeeb, B.I. Khalil, S.M. Al-Jubouri, T.M. Sabirova, N.A. Tretyakova, H.S. Majdi, Q.F. Alsalhy, A.J. Braihi, Comparative study of embedded functionalised MWCNTs and GO in Ultrafiltration (UF) PVC membrane: interaction mechanisms and performance. Int. J. Environ. Anal. Chem. 103(2), 415–436 (2023)

    CAS  Google Scholar 

  68. S. Wilczewski, K. Skórczewska, J. Tomaszewska, K. Lewandowski, Structure and properties of poly(vinyl chloride)/graphene nanocomposites. Polym. Test. 81, 106282 (2020)

    CAS  Google Scholar 

  69. K. Ramachandran, V. Boopalan, J.C. Bear, R. Subramani, Multi-walled carbon nanotubes (MWCNTs)-reinforced ceramic nanocomposites for aerospace applications: a review. J. Mater. Sci. 57(6), 3923–3953 (2022)

    ADS  CAS  Google Scholar 

  70. I. Ali, A. Ali, A. Ali, M. Ramzan, K. Hussain, L. Xudong, Z. Jin, O.A. Titton Dias, Y. Weimin, L. Haoyi, Z. Liyan, M. Sain, Highly electro-responsive composite gel based on functionally tuned graphene filled polyvinyl chloride. Polym. Adv. Technol. 32(9), 3679–3688 (2021)

  71. C.-H. Jung, J.-Y. Sohn, H.-S. Kim, I.-T. Hwang, H.-J. Lee, J. Shin, J.-H. Choi, Preparation and electrical-property characterization of poly(vinyl chloride)-derived carbon nanosheet by ion beam irradiation-induced carbon clustering and carbonization. Appl. Surf. Sci. 439, 968–975 (2018)

    ADS  CAS  Google Scholar 

  72. P. Płóciennik, D. Guichaoua, A. Zawadzka, A. Korcala, J. Strzelecki, P. Trzaska, B. Sahraoui, Optical properties of MgO thin films grown by laser ablation technique. Opt. Quant. Electron. 48(5), 277 (2016)

    Google Scholar 

  73. G. Wroblewski, B. Swatowska, L. Dybowska-Sarapuk, M. Jakubowska, T. Stapinski, Optical properties of transparent electrodes based on carbon nanotubes and graphene platelets. J. Mater. Sci. Mater. Electron. 27(12), 12764–12771 (2016)

    CAS  Google Scholar 

  74. W.K. Tobiska, A. Nusinov, ISO 21348—Process for determining solar irradiances, in: 36th COSPAR Scientific Assembly, vol. 36 of COSPAR, 2006.

  75. B.P. Jelle, A. Gustavsen, T.N. Nilsen, T. Jacobsen, Solar material protection factor (SMPF) and solar skin protection factor (SSPF) for window panes and other glass structures in buildings. Sol. Energy Mater. Sol. Cells 91(4), 342–354 (2007)

    CAS  Google Scholar 

  76. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Physica Status Solidi (b) 15(2), 627–637 (1966)

    ADS  CAS  Google Scholar 

  77. P. Dhatarwal, R.J. Sengwa, Investigation on the optical properties of (PVP/PVA)/Al2O3 nanocomposite films for green disposable optoelectronics. Physica B 613, 412989 (2021)

    CAS  Google Scholar 

  78. T.S. Soliman, S.A. Vshivkov, Effect of Fe nanoparticles on the structure and optical properties of polyvinyl alcohol nanocomposite films. J. Non-Cryst. Solids 519, 119452 (2019)

    CAS  Google Scholar 

  79. B. Karthikeyan, R. Vettumperumal, Structural and optical characterization of Mg2SiO4 and Mg2SiO4–Pr6O11 nanocomposite for optical devices. Opt. Mater. 123, 111878 (2022)

    CAS  Google Scholar 

  80. K.A. Shore, Electronic Processes in non-crystalline materials (second edition), by N.F. Mott and E.A. Davis. Contemp. Phys. 55(4), 337–337 (2014)

  81. O.F. Farag, E. Abdel-Fattah, Synthesis and characterization PVA/plasma-functionalized MWCNTs nanocomposites films. J. Polym. Res. 30(5), 183 (2023)

    CAS  Google Scholar 

  82. N.M. Ravindra, A. Sadoh, S. Hossain, S.J.M.S. Fereira, Optical properties of low-refractive index polymers. Mater. Sci Eng. 6(2), 68–76 (2022)

    Google Scholar 

  83. H.M. Gomaa, I.S. Yahia, Toward a novel and accurate relationship between electrical and optical conductivity in opto-material sciences: new strategy. J. Comput. Electron. 21(6), 1396–1403 (2022)

    Google Scholar 

  84. M.I. Baig, M. Anis, M.D. Shirsat, A.M. Alshehri, H.H. Somaily, S.S. Hussaini, Influence of Zn2+ on laser induced optical and electrical traits of KH2PO4 crystal for NLO device applications. Optik 227, 165998 (2021)

    ADS  CAS  Google Scholar 

  85. A.A. El-Saady, N. Roushdy, A.A.M. Farag, A.H. Ashour, M.M. El-Nahass, D.M. Abdel Basset, Influence of gamma-irradiation on the structural, morphological, and optical properties of β-H2Pc nanocrystalline films: implications for optoelectronic applications. J. Electron. Mater. 52(12), 8001–8018 (2023)

  86. A.I. Ali, J.Y. Son, A.H. Ammar, A. Abdel Moez, Y.S. Kim, Optical and dielectric results of Y0.225Sr0.775CoO3±δ thin films studied by spectroscopic ellipsometry technique. Results Phys. 3, 167–172 (2013)

  87. K. Kumar, V.C. Vincent, G. Bakiyaraj, K. Kirubavathi, K. Selvaraju, Investigations of solid state, optical, NLO, dielectric and mechanical behaviour of methyl para-hydroxybenzoate crystal. Optik 226, 165738 (2021)

    ADS  CAS  Google Scholar 

  88. M. Behera, R. Naik, C. Sripan, R. Ganesan, N.C. Mishra, Influence of Bi content on linear and nonlinear optical properties of As40Se60−xBix chalcogenide thin films. Curr. Appl. Phys. 19(8), 884–893 (2019)

    ADS  Google Scholar 

  89. R.C. Jayasinghe, Y.F. Lao, A.G. Perera, M. Hammar, C.F. Cao, H.Z. Wu, Plasma frequency and dielectric function dependence on doping and temperature for p-type indium phosphide epitaxial films. J. Phys. Condens. Matter 24(43), 435803 (2012)

    ADS  CAS  PubMed  Google Scholar 

  90. S.H. Wemple, M. DiDomenico, Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 3(4), 1338–1351 (1971)

    ADS  Google Scholar 

  91. F.A. Najar, F.A. Mir, G.B. Vakil, S.A. Dar, B. Ghayas, Effect of γ-radiations on the optoelectrical parameters of coumarin-poly vinyl alcohol composite thin films. Radiat. Phys. Chem. 193, 109973 (2022)

    CAS  Google Scholar 

  92. H.M. Gomaa, I.S. Yahia, A new strategy: a more valid determination of the nonlinear optical parameters for optoelectronic applications. J. Comput. Electron. 21(5), 1174–1179 (2022)

    Google Scholar 

  93. M. Pinnow, Materials for nonlinear optics: chemical perspectives, in ACS Symposium Series No. 455, vol. 44(2), ed. by S.R. Marder, J.E. Sohn, G.D. Stucky (American Chemical Society, Washington, DC, 1991), p. 112

  94. Z. Lin, X. Jiang, L. Kang, P. Gong, S. Luo, M.-H. Lee, First-principles materials applications and design of nonlinear optical crystals. J. Phys. D Appl. Phys. 47(25), 253001 (2014)

    ADS  Google Scholar 

  95. G. Rajasekar, M.K. Dhatchaiyini, P. Rekha, S. Sudhahar, G. Vinitha, A. Bhaskaran, Investigation on linear and nonlinear optical properties of third-order nonlinear optical semi-organic material: ammonium bis (citrato) borate dihydrate. J. Mater. Sci. Mater. Electron. 31(21), 18732–18744 (2020)

    Google Scholar 

  96. H. Tichá, L. Tichy, Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides. J. Optoelectron. Adv. Mater. 4, 381–386 (2002)

    Google Scholar 

  97. Y.M. Yiu, T.K. Sham, G. Kaur, Electronic structure of Se, Se–Te, and Se–Te–Sb systems: some observations from the X-ray spectroscopy and ab initio calculations. J. Appl. Phys. 104(1), 013713 (2008)

    ADS  Google Scholar 

  98. R.R. Reddy, Y. Nazeer Ahammed, K. Rama Gopal, P. Abdul Azeem, T.V.R. Rao, P. Mallikarjuna Reddy, Optical electronegativity, bulk modulus and electronic polarizability of materials. Opt. Mater. 14(4), 355–358 (2000)

Download references

Acknowledgements

The authors extend their appreciation to the Deanship for Research and Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number: IFP22UQU4250045DSR055.

Author information

Authors and Affiliations

Authors

Contributions

AAM: Investigation, formal analysis, writing—original draft, and writing—review and editing. NAA: Methodology, formal analysis, writing—original draft, and writing—review and editing. AQA: Investigation, formal analysis, writing—original draft, and writing—review and editing. SIH: Methodology, formal analysis, writing—original draft, and writing—review and editing. AH: Writing—review, funding and editing revised version. AMA-E: Investigation, formal analysis, writing—original draft, and writing—review and editing. AMAS: Investigation, formal analysis, writing—original draft, and writing—review and editing. All authors have read and agreed to the final version of the manuscript.

Corresponding authors

Correspondence to Ahmad Hakamy or A. M. A. Shamekh.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, A.A., Ali, N.A., Abdullah, A.Q. et al. Effect of graphene nanoplates and multi-walled carbon nanotubes doping on structural and optical properties of polyvinyl chloride membranes for outdoor applications. J Mater Sci: Mater Electron 35, 440 (2024). https://doi.org/10.1007/s10854-024-12132-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12132-3

Navigation