Skip to main content
Log in

The effect of the PbI\(_2\) surface passivation on the leakage current for MAPbI\(_3\) single crystal nuclear detectors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In semiconductor radiation detectors, leakage current is a major noise source affecting energy resolution and sensitivity. The surface passivation technology can reduce this leakage current and hence significantly enhance detector performance. Here, we demonstrate a facile way to passivate the surface of the nuclear detectors based on Methylammonium Lead Iodide (MAPbI\(_3\)) single crystals using soaking treatment in ethanol. A dense passivation layer of PbI\(_2\) was formed on the crystal surface, significantly reducing the surface leakage current by an order of magnitude under the same voltage. The energy resolution of the MAPbI\(_3\)-based detector is therefore improved by nearly 10% for the detection of 59.5 KeV irradiated from \(^{241}\)Am. Therefore, the PbI\(_2\) passivation by ethanol-soaking treatment is proved to be an effective method to reduce leakage current and improve detection performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. P.M. Johns, J.C. Nino, Room temperature semiconductor detectors for nuclear security. J. Appl. Phys. 126, 040902 (2019)

    Article  ADS  Google Scholar 

  2. T. Schlesinger et al., Cadmium zinc telluride and its use as a nuclear radiation detector material. Mater. Sci. Eng. R. Rep. 32, 103–189 (2001)

    Article  Google Scholar 

  3. K. Hitomi, T. Shoji, K. Ishii, Advances in tlbr detector development. J. Cryst. Growth 379, 93–98 (2013)

    Article  ADS  CAS  Google Scholar 

  4. L. van den Berg, R.D. Vigil, Fabrication of mercuric iodide radiation detectors. Nucl. Instrum. Methods Phys. Res. Sect. A 458, 148–151 (2001)

    Article  ADS  Google Scholar 

  5. M.D. Alam, S.S. Nasim, S. Hasan, Recent progress in cdznte based room temperature detectors for nuclear radiation monitoring. Prog. Nucl. Energy 140, 103918 (2021)

    Article  CAS  Google Scholar 

  6. Q. Dong et al., Electron-hole diffusion lengths> 175 \(\mu\)m in solution-grown ch3nh3pbi3 single crystals. Science 347, 967–970 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. X. Liu et al., Mapbbr3- x i x crystals improved by accurate solution-grown procedure for alpha particle detection. Front. Phys. 7, 232 (2020)

    Article  Google Scholar 

  8. E. Lukosi et al., Methylammonium lead tribromide semiconductors: Ionizing radiation detection and electronic properties. Nucl. Instrum. Methods Phys. Res. Sect. A 927, 401–406 (2019)

    Article  ADS  CAS  Google Scholar 

  9. W. Wang et al., Electronic-grade high-quality perovskite single crystals by a steady self-supply solution growth for high-performance x-ray detectors. Adv. Mater. 32, 2001540 (2020)

    Article  CAS  Google Scholar 

  10. S. Yakunin et al., Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites. Nat. Photonics 10, 585–589 (2016)

    Article  ADS  CAS  Google Scholar 

  11. D. Shi et al., Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. M.I. Saidaminov et al., High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat. Commun. 6, 7586 (2015)

    Article  ADS  PubMed  Google Scholar 

  13. Y. He et al., Resolving the energy of \(\gamma\)-ray photons with mapbi3 single crystals. ACS Photonics 5, 4132–4138 (2018)

    Article  CAS  Google Scholar 

  14. N. Aristidou et al., Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nat. Commun. 8, 15218 (2017)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  15. J. Zhou et al., Understanding the passivation mechanisms and opto-electronic spectral response in methylammonium lead halide perovskite single crystals. ACS Appl. Mater. Interfaces 10, 35580–35588 (2018)

    Article  CAS  PubMed  Google Scholar 

  16. F. Ambrosio, D. Meggiolaro, E. Mosconi, F. De Angelis, Charge localization and trapping at surfaces in lead-iodide perovskites: the role of polarons and defects. J. Mater. Chem. A 8, 6882–6892 (2020)

    Article  CAS  Google Scholar 

  17. L. Zheng et al., Alcohol assistant surface passivated perovskites for efficient perovskite solar cells. Org. Electron. 111, 106653 (2022)

    Article  CAS  Google Scholar 

  18. K. Kim et al., Detector performance of ammonium-sulfide-passivated cdznte and cdmnte materials. Hard X-Ray Gamma-Ray Neutron Detect. Phys. XII 7805, 356–361 (2010)

    Google Scholar 

  19. I.O. Okwechime et al., Chemical treatment of cdznte radiation detectors using hydrogen bromide and ammonium-based solutions. Hard X-Ray Gamma-Ray Neutron Detect. Phys. XVI 9213, 165–169 (2014)

    Google Scholar 

  20. S. U. Egarievwe, et al., Effects of surface passivation on cdzntese nuclear detectors. In 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) (2021)

  21. S.U. Egarievwe, U.N. Roy, C.A. Goree, B.A. Harrison, R.B. James, Ammonium fluoride passivation of cdzntese sensors for applications in nuclear detection and medical imaging. Sensors 19, 3271 (2019)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. M.L. Drabo et al., Analysis of te and teo\(_2\) on cdznte nuclear detectors treated with hydrogen bromide and ammonium-based solutions. J. Mater. Sci. Chem. Eng. (2017). https://doi.org/10.4236/msce.2017.54002

    Article  Google Scholar 

  23. M. Loizos, M. Tountas, P. Mangelis, K. Rogdakis, E. Kymakis, Surface passivation of sequentially deposited perovskite solar cells by octylammonium spacer cations. APL Energy 1, 026102 (2023)

    Article  Google Scholar 

  24. T.-H. Wu, G.D. Sharma, F.-C. Chen, Surface-passivated single-crystal micro-plates for efficient perovskite solar cells. Processes 10, 1477 (2022)

    Article  CAS  Google Scholar 

  25. A. Cook et al., Passivation by pyridine-induced pbi2 in methylammonium lead iodide perovskites. RSC Adv. 10, 23829–23833 (2020)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Q. Jiang et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019)

    Article  ADS  CAS  Google Scholar 

  27. T. Wang, F. Xu, Q. Wang, L. Tai, G. Xu, Improved perovskite structural stability by halogen bond from excessive lead iodide via numerical simulation. Curr. Comput.-Aided Drug Des. 12, 1073 (2022)

    Google Scholar 

  28. Y. Zhang et al., Auto-passivation of crystal defects in hybrid imidazolium/methylammonium lead iodide films by fumigation with methylamine affords high efficiency perovskite solar cells. Nano Energy 58, 105–111 (2019)

    Article  CAS  Google Scholar 

  29. J. Wu et al., A modified sequential deposition route for high-performance carbon-based perovskite solar cells under atmosphere condition. Molecules 27, 481 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. R. Xu et al., Uncovering the formation mechanism of striations and pyramidal pits on a native mapbi3 single-crystal surface. J. Phys. Chem. C 126, 7319–7325 (2022)

    Article  CAS  Google Scholar 

  31. Z. Wang, Q. Lin, F.P. Chmiel, N. Sakai, H.J. Snaith, Efficient ambient-air-stable solar cells with 2d–3d heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat. Energy 2, 17135 (2017)

    Article  ADS  CAS  Google Scholar 

  32. Y. Liu, S. Akin, L. Pan, R. Uchida, M. Grtzel, Ultrahydrophobic 3d/2d fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22. Sci. Adv. 5, eaaw2543 (2019)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. W.Q. Wu et al., Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells. Sci. Adv. (2019). https://doi.org/10.1126/sciadv.aav8925

    Article  PubMed  PubMed Central  Google Scholar 

  34. M. Prokesch, C. Szeles, Accurate measurement of electrical bulk resistivity and surface leakage of cdznte radiation detector crystals. J. Appl. Phys. 100, 014503 (2006)

    Article  ADS  Google Scholar 

  35. A. Kargar, H. Kim, L. Cirignano, K. Shah, The effect of guard ring on leakage current and spectroscopic performance of tlbr planar detectors. Radiat. Detect.: Syst. Appl. XV 9215, 77–85 (2014)

    Google Scholar 

  36. A. Ruzin, Y. Nemirovsky, Passivation and surface leakage in cdznte spectrometers. Appl. Phys. Lett. 71, 2214–2215 (1997)

    Article  ADS  CAS  Google Scholar 

  37. Y. Nemirovsky, G. Asa, C. Jakobson, A. Ruzin, J. Gorelik, Dark noise currents and energy resolution of cdznte spectrometers. J. Electron. Mater. 27, 800–806 (1998)

    Article  ADS  CAS  Google Scholar 

  38. A. Bolotnikov, G. Camarda, G. Wright, R. James, Factors limiting the performance of cdznte detectors. IEEE Trans. Nucl. Sci. 52, 589–598 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 12175131), the Opening Foundation of Zhejiang Engineering Research Center of MEMS(Grant No. MEMSZJERC2302). Thanks are due to Xu Haitao for assistance with the AFM experiments .

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 12175131), the Opening Foundation of Zhejiang Engineering Research Center of MEMS(Grant No. MEMSZJERC2302).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by ZJ, CG, WH, YH, WW, XR. The first draft of the manuscript was written by ZJ and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Cao Gang or Xu Run.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 2670 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiajie, Z., Gang, C., Hao, W. et al. The effect of the PbI\(_2\) surface passivation on the leakage current for MAPbI\(_3\) single crystal nuclear detectors. J Mater Sci: Mater Electron 35, 450 (2024). https://doi.org/10.1007/s10854-024-12117-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12117-2

Navigation