Skip to main content

The Impact of Detection Volume on Hybrid Halide Perovskite-Based Radiation Detectors

  • Chapter
  • First Online:
Advanced Materials for Radiation Detection
  • 1526 Accesses

Abstract

Ionizing radiation, wherever present, e.g., in medicine, nuclear environment, or homeland security, due to its strong impact on biological matter, should be closely monitored. Availability of semiconductor materials with distinctive characteristics required for an efficient high-energy photon detection, especially with high atomic numbers (high Z), in sufficiently large, single-crystalline forms, which would also be both chemically and mechanically robust, is still very limited.

In this chapter, we introduce the new metal halide perovskite material, which meets all aforementioned key requirements, at an extremely low cost. In particular, γ-ray detectors based on crystals of methylammonium lead tribromide (MAPbBr3) equipped with carbon electrodes were fabricated, allowing radiation detection by photocurrent measurements at room temperatures with record sensitivities (333.8 μC Gy−1 cm−2). Importantly, the devices operated at low bias voltages (<1.0 V), which may enable future low-power operation in energy-sparse environments, including space. The detector prototypes were exposed to radiation from a 60Co source at dose rates up to 2.3 Gy h−1 under ambient and operational conditions for over 100 h, without any sign of degradation. We postulate that the excellent radiation tolerance stems from the intrinsic structural plasticity of the organic-inorganic halide perovskites, which can be attributed to a defect-healing process by fast ion migration at the nanoscale level.

Furthermore, since the sensitivity of the γ-ray detectors is proportional to the volume of the employed MAPbBr3 crystals, a unique crystal growth technique is introduced, baptized as the “oriented crystal-crystal intergrowth” or OC2G method, yielding crystal specimens with volume and mass of over 1000 cm3 and 3.8 kg, respectively. Large-volume specimens have a clear advantage for radiation detection; however, the demonstrated kilogram-scale crystallogenesis coupled with future cutting and slicing technologies may have additional benefits, for instance, enable the development for the first time of crystalline perovskite wafers, which may challenge the status quo of present and future performance limitations in all optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Uses of Radiation. https://www.nrc.gov/about-nrc/radiation/around-us/uses-radiation.html. Accessed 01 July 2019

  2. Radiation Answers. https://www.radiationanswers.org/radiation-sources-uses.html. Accessed 01 July 2019

  3. Reilly, D., Ensslin, N., Smith Jr. H., Kreiner S.: Passive nondestructive assay of nuclear materials (No. NUREG/CR--5550). Nuclear Regulatory Commission, 1991

    Google Scholar 

  4. Yakunin, S., Dirin, D.N., Shynkarenko, Y., Morad, V., Cherniukh, I., Nazarenko, O., Kreil, D., Nauser, T., Kovalenko, M.V.: Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites. Nat. Photonics. 10(9), 585 (2016)

    Article  Google Scholar 

  5. Stoumpos, C.C., Malliakas, C.D., Peters, J.A., Liu, Z., Sebastian, M., Im, J., Chasapis, T.C., Wibowo, A.C., Chung, D.Y., Freeman, A.J., Wessels, B.W.: Crystal growth of the perovskite semiconductor CsPbBr3: A new material for high-energy radiation detection. Cryst. Growth Des. 13(7), 2722–2727 (2013)

    Article  Google Scholar 

  6. Wei, H., DeSantis, D., Wei, W., Deng, Y., Guo, D., Sevenije, T.J., Cao, L., Huang, J.: Dopant compensation in alloyed CH3NH3PbBr3−xClx perovskite single crystals for gamma-ray spectroscopy. Nat. Mater. 16(8), 826 (2017)

    Article  Google Scholar 

  7. Nazarenko, O., Yakunin, S., Morad, V., Cherniukh, I., Kovalenko, M.V.: Single crystals of caesium formamidinium lead halide perovskites: Solution growth and gamma dosimetry. NPG Asia Mater. 9(4), e373 (2017)

    Article  Google Scholar 

  8. High Purity Germanium Single Crystal. http://www.taikunchina.com/en/show-product-74.html. Accessed 05 July 2019

  9. Manufacturing cadmium zinc telluride CZT and turning it into cutting-edge radiation detectors. https://www.kromek.com/cadmium-zinc-telluride-czt/. Accessed 05 July 2019

  10. X-Ray Mass Attenuation Coefficients. https://physics.nist.gov/PhysRefData/XrayMassCoef/tab4.html. Accessed 05 July 2019

  11. Owens, A., Peacock, A.: Compound semiconductor radiation detectors. Nucl. Instrum. Methods Phys. Res., Sect. A. 531(1–2), 18–37 (2004)

    Article  Google Scholar 

  12. Andrea, Š., Zlatko, B., Nečas, V., Dubecký, F., Anh, T.L., Sedlačková, K., Boháček, P., Zápražný, Z.: From single GaAs detector to sensor for radiation imaging camera. Appl. Surf. Sci. 461, 3–9 (2018)

    Article  Google Scholar 

  13. Meng, L.J., He, Z., Alexander, B., Sandoval, J.: Spectroscopic performance of thich HgI2 detectors. IEEE Trans. Nucl. Sci. 53(3), 1706–1712 (2006)

    Article  Google Scholar 

  14. Limousin, O.: New trends in CdTe and CdZnTe detectors for X- and gamma-ray applications. Nucl. Instrum. Methods Phys. Res., Sect. A. 504(1–3), 24–37 (2003)

    Article  Google Scholar 

  15. Yakunin, S., Sytnyk, M., Kriegner, D., Shrestha, S., Richter, M., Matt, G.J., Azimi, H., Brabec, C.J., Stangl, J., Kovalenko, M.V., Heiss, W.: Detection of X-ray photons by solution-processed lead halide perovskites. Nat. Photonics. 9(7), 444–449 (2015)

    Article  Google Scholar 

  16. Wangyang, P., Gong, C., Rao, G., Hu, K., Wang, X., Yan, C., Dai, L., Wu, C., Xiong, J.: Recent advances in halide perovskite photodetectors based on different dimensional materials. Adv. Opt. Mater. 6(11), 1701302 (2018)

    Article  Google Scholar 

  17. Náfrádi, B., Náfrádi, G., Forró, L., Horváth, E.: Methylammonium lead iodide for efficient X-ray energy conversion. J. Phys. Chem. C. 119(45), 25204–25208 (2015)

    Article  Google Scholar 

  18. Wei, H., Fang, Y., Mulligan, P., Chuirazzi, W., Fang, H.H., Wang, C., Ecker, B.R., Gao, Y., Loi, M.A., Cao, L., Huang, J.: Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photonics. 10(5), 333 (2016)

    Article  Google Scholar 

  19. Wei, W., Zhang, Y., Xu, Q., Wei, H., Fang, Y., Wang, Q., Deng, Y., Li, T., Guverman, A., Cao, L., Huang, J.: Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nat. Photonics. 11(5), 315 (2017)

    Article  Google Scholar 

  20. Glushkova, A., Andričević, P., Smajda, R., Náfrádi, B., Kollár, M., Djokić, V., Arakcheeva, A., Forró, L., Pugin, R., Horváth, E.: Ultrasensitive 3D aerosol-jet-printed perovskite X-ray photodetector. ACS Nano. 15(3), 4077–4084 (2021)

    Article  Google Scholar 

  21. Sun, Q., Xu, Y., Zhang, H., Xiao, B., Liu, X., Dong, J., Cheng, Y., Zhang, B., Jie, W., Kanatzidis, M.G.: Optical and electronic anisotropies in perovskitoid crystals of Cs3Bi2I9 studies of nuclear radiation detection. J. Mater. Chem. A. 6(46), 23388–23395 (2018)

    Article  Google Scholar 

  22. Kim, Y.C., Kim, K.H., Son, D.Y., Jeong, D.N., Seo, J.Y., Choi, Y.S., Han, I.T., Lee, S.Y., Park, N.Y.: Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature. 550(7674), 87 (2017)

    Article  Google Scholar 

  23. Dong, Q., Fang, Y., Shao, Y., Mulligan, P., Qiu, J., Cao, L., Huang, J.: Electron-hole diffusion lengths >175 um in solution-grown CH3NH3PbI 3 single crystals. Science. 347(6225), 967–970 (2015)

    Article  Google Scholar 

  24. He, Y., Matei, L., Jung, H.J., McCall, K.M., Chen, M., Stoumpos, C.C., Liu, Z., Peters, J.A., Chung, D.Y., Wessels, B.W., Wasielewski, M.R.: High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals. Nat. Commun. 9(1), 1609 (2018)

    Article  Google Scholar 

  25. Andričević, P., Frajtag, P., Lamirand, V.P., Pautz, A., Kollár, M., Náfrádi, B., Sienkiewicz, A., Garma, T., Forró, L., Horváth, E.: Kilogram-scale crystallogenesis of halide perovskites for gamma-rays dose rate measurements. Adv. Sci. 8(2), 2001882 (2021)

    Article  Google Scholar 

  26. Noda, S., Hasegawa, K., Sugime, H., Kakehi, K., Zhang, Z., Maruyama, S., Yamaguchi, Y.: Millimeter-thick single-walled carbon nanotube forests: Hidden role of catalyst support. Jpn. J. Appl. Phys. 46(5L), L399 (2007)

    Article  Google Scholar 

  27. Saidaminov, M.I., Abdelhady, A.L., Murali, B., Alarousu, E., Burlakov, V.M., Peng, W., Dursun, I., Wang, L., He, Y., Muculan, G., Goriely, A.: High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat. Commun. 6(May), 7586 (2015)

    Article  Google Scholar 

  28. Andričević, P., Kollár, M., Mettan, X., Náfrádi, B., Sienkiewicz, A., Fejes, D., Hernádi, K., Forró, L., Horváth, E.: Three-dimensionally enlarged photoelectrodes by a protogenetic inclusion of vertically aligned carbon nanotubes into CH3NH3PbBr3 single crystals. J. Phys. Chem. C. 121(25), 13549–13556 (2017)

    Article  Google Scholar 

  29. Theler: Gamma irradiation in LOTUS with SILC. EPFL, student report, 2016

    Google Scholar 

  30. Kim, K., Kim, S., Hong, J., Lee, J., Hong, T., Bolotnikov, A.E., Camarda, G.S., James, R.B.: Purification of CdZnTe by electromigration. J. Appl. Phys. 117(14), 145702 (2015)

    Article  Google Scholar 

  31. He, Y., Ke, W., Alexander, G.C., McCall, K.M., Chica, D.G., Liu, Z., Hadar, I., Stoumpos, C.C., Wessels, B.W., Kanatzidis, M.G.: Resolving the energy of γ-ray photons with MAPbI3 single crystals. ACS Photonics. 5(10), 4132–4138 (2018)

    Article  Google Scholar 

  32. Pan, L., Feng, Y., Kandlakunta, P., Huang, J., Cao, L.R.: Performance of perovskite CsPbBr 3 single crystal detector for gamma-ray detection. IEEE Trans. Nucl. Sci. 67(2), 443–449 (2020)

    Article  Google Scholar 

  33. Musiienko, P.M., Grill, R., Praus, P., Vasylchenko, I., Pekarek, J., Tisdale, J., Ridzonova, K., Belas, E., Landová, L., Hu, B.: Deep levels, charge transport and mixed conductivity in organometallic halide perovskites. Energy Environ. Sci. 12(4), 1413–1425 (2019)

    Article  Google Scholar 

  34. Andričević, P., Mettan, X., Kollár, M., Náfrádi, B., Sienkiewicz, A., Garma, T., Rossi, L., Forró, L., Horváth, E.: Light-emitting electrochemical cells of single crystal hybrid halide perovskite with vertically aligned carbon nanotubes contacts. ACS Photonics. 6(4), 967–975 (2019)

    Article  Google Scholar 

  35. Wang, X., Wu, Y., Li, G., Wu, J., Zhang, X., Li, Q., Wang, B., Chen, J., Lei, W.: Ultrafast ionizing radiation detection by p-n junctions made with single crystals of solution-processed perovskite. Adv. Electr. Mater. 4(11), 1800237 (2018)

    Article  Google Scholar 

  36. Wei, H., Huang, J.: Halide lead perovskites for ionizing radiation detection. Nat. Commun. 10(1), 1066 (2019)

    Article  Google Scholar 

  37. Li, Z.: Radiation damage effects in Si materials and detectors and rad-hard Si detectors for SLHC. J. Instrum. 4(03), P03011 (2009)

    Article  Google Scholar 

  38. Choi, T.S., Hess, D.W.: Chemical etching and patterning of copper, silver, and gold films at low temperatures. ECS J. Solid State Sci. Technol. 4(1), N3084–N3093 (2015)

    Article  Google Scholar 

  39. Boyd, C.C., Cheacharoen, R., Leijtens, T., Mcgehee, M.D.: Chem. Rev. 119, 3418 (2019)

    Article  Google Scholar 

  40. Yang, K., Huang, K., Li, X., Zheng, S., Hou, P., Wang, J., Guo, H., Song, H., Li, B., Li, H., Liu, B., Zhong, X., Yang, J.: Org. Electron. 71, 79 (2019)

    Article  Google Scholar 

  41. Lang, F., Nickel, N.H., Bundesmann, J., Seidel, S., Denker, A., Albrecht, S., Brus, V.V., Rappich, J., Rech, B., Landi, G., Neitzert, H.C.: Adv. Mater. 28, 8726 (2016)

    Article  Google Scholar 

  42. Yang, S., Xu, Z., Xue, S., Kandlakunta, P., Cao, L.: Adv. Mater. 31(1805547), 4 (2019)

    Google Scholar 

  43. Ceratti, D.R., Rakita, Y., Cremonesi, L., Tenne, R., Kalchenko, V., Elbaum, M., Oron, D., Alberto, M., Potenza, C., Hodes, G., Cahen, D.: Adv. Mater. 30(1706273), 10 (2018)

    Google Scholar 

  44. Domanski, K., Roose, B., Matsui, T., Saliba, M., Turren-Cruz, S.H., Correa-Baena, J.P., Carmona, C.R., Richardson, G., Foster, J.M., De Angelis, F., Ball, J.M.: Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells. Energy Environ. Sci. 10(2), 604–613 (2017)

    Article  Google Scholar 

  45. Miyazawa, Y., Ikegami, M., Chen, H.W., Ohshima, T., Imaizumi, M., Hirose, K., Miyasaka, T.: Tolerance of perovskite solar cell to high-energy particle irradiations in space environment. iScience. 2, 148–155 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

I would like to acknowledge László Forró and Endre Horváth for envisioning this project as well as the contributions from Márton Kollár, Anastasiia Glushkova, Pavel Frajtag, Vincent Pierre Lamirand, Andreas Pautz, Bálint Náfrádi, Andrzej Sienkiewicz, and Tonko Garma. The work was supported by the Swiss National Science Foundation (No. 513733) and the ERC advanced grant “PICOPROP” (Grant No. 670918).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Andričević, P. (2022). The Impact of Detection Volume on Hybrid Halide Perovskite-Based Radiation Detectors. In: Iniewski, K.(. (eds) Advanced Materials for Radiation Detection. Springer, Cham. https://doi.org/10.1007/978-3-030-76461-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76461-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76460-9

  • Online ISBN: 978-3-030-76461-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics