Skip to main content
Log in

Microstructure and magnetic properties of Ni–Zn ferrite ceramics with different Ni2+ contents

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of NixZn1−xFe2O4 ( NiZn, x = 0.15, 0.25, 0.35, 0.45, 0.65, 0.7, 0.8, 0.85) ferrites were prepared via a solid-phase sintering method. The microstructure, phase, and gyromagnetic properties of the NiZn samples were studied in depth. It was found that the lattice constants, density, and hardness of the samples gradually decreased with increasing Ni2+ content. X-ray diffraction confirmed that all of the samples were in the spinel phase. Scanning electron microscopy indicated that the grain sizes were more uniformly distributed when x = 0.65. Raman analysis showed that the variation of Ni2+ content affected the occupancy distribution of ferrite ions. The results indicated that Zn2+ mainly occupied the A-site and that Ni2+ mainly occupied the B-site. The coercivity (Hc) of NiZn increased with increasing Ni2+ content. Meanwhile, the saturation magnetization (Ms) initially increased and then decreased. When x = 0.65, the total molecular magnetic moment started decreasing because of the decrease in the net A-site magnetic moment. The sample that had a composition of Ni0.65Zn0.35Fe2O4 had the highest Ms intensity with a value of 78.68 emu/g and a maximum value of 4πMs = 4780 Gs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. M. Kurian, D.S. Nair, Effect of preparation conditions on nickel zinc ferrite nanoparticles: a comparison between sol–gel auto com-bustion and co-precipitation methods. J. Saudi Chem. Soc. 20, S517–S522 (2016)

    Article  CAS  Google Scholar 

  2. M.N. Akhtar, M.A. Khan, M. Ahmad, M.S. Nazir, M. Imran, A. Ali, A. Sattar, G. Murtaza, Evaluation of structural, morphological and magnetic properties of CuZnNi (CuxZn0.5–xNi0.5Fe2O4) nanocrystalline ferrites for core, switching and MLCI’s applications. J. Magn. Mater. 421, 260–268 (2017)

    Article  CAS  Google Scholar 

  3. S. Taneja, D. Chahar, P. Thakur, A. Thakur, Influence of bismuth doping on structural, electrical and dielectric properties of Ni–Zn nanoferrites. J. Alloys Compd. 859, 157760 (2020)

    Article  Google Scholar 

  4. A. Neha, S.B. Narang, Magnetic characterization of nickel–zinc spinel ferrites along with their microwave characterization in Ku band. J. Magn. Magn. Mater. 513, 167052 (2020)

    Article  Google Scholar 

  5. K.S. Martirosyan, D. Luss, Carbon combustion synthesis of ferrites: synthesis and characterization. Ind. Eng. Chem. Res. 5, 46 (2007)

    Google Scholar 

  6. S.T. Mahmud, A.K.M.A. Hossain, A.K.M.A. Hakim, M. Seki, T. Kawai, H. Tabata, Influence of microstructure on the complex permeability of spinel type Ni–Zn ferrite. J. Magn. Magn. Mater. 305, 269–274 (2006)

    Article  CAS  Google Scholar 

  7. V.G. Harris, A. Geiler, Y. Chen, S.D. Yoon, C. Vittoria, Recent advances in processing and applications of microwave ferrites. J. Magn. Magn. Mater. 321, 2035–2047 (2009)

    Article  CAS  Google Scholar 

  8. D.L. Zhao, Q. Lv, Z.M. Shen, Fabrication and microwave absorbing properties of Ni–Zn spinel ferrites. J. Alloys Compd. 480, 634–638 (2009)

    Article  CAS  Google Scholar 

  9. P.J. Liu, L. Li, Z.J. Yao, J.T. Zhou, M.M. Du, T.T. Yao, Synthesis and excellent microwave absorption propertyof polyaniline nanorods coated Li0.435Zn0.195Fe2.37O4 nanocomposites. J. Mater. Sci. Mater. Electron. 27, 7776–7787 (2016)

    Article  CAS  Google Scholar 

  10. P.J. Liu, Z.J. Yao, V.M.H. Ngc, J.T. Zhou, L.B. Kong, K. Yue, Facile synthesis of ultrasmall Fe3O4 nanoparticles on MXenes for high microwave absorption performance. Composites 115, 371–382 (2018)

    Article  CAS  Google Scholar 

  11. P.J. Liu, Z.J. Yao, J.T. Zhou, Z.H. Yang, L.B. Kong, Small magnetic co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance. J. Mater. Chem. C 4, 9738–9749 (2016)

    Article  CAS  Google Scholar 

  12. A.A. Ati, Z. Othaman, A. Samavati, Influence ofcobalt on structural and magnetic properties ofnickel ferrite nanoparticles. J. Mol. Struct. 1052, 177–182 (2013)

    Article  CAS  Google Scholar 

  13. M. Jalaly, M.H. Enayati, P. Kameli, F. Karimzadeh, Effect of composition on structural and magnetic properties of nanocrystalline ball milled Ni1 – xZnxFe2O4 ferrite. Physica B 405, 507–512 (2010)

    Article  CAS  Google Scholar 

  14. M.P. Reddy, W. Madhuri, N.R. Reddy, K.V.S. Kumar, V.R.K. Murthy, R.R. Reddy, Magnetic properties of Ni–Zn ferrites prepared by microwave sintering method. J. Electroceram. 28, 1–9 (2012)

    Article  CAS  Google Scholar 

  15. S.P. Iglesias, A. Arias-Durán, J.M. Yañez-Limón, R. Ramirez-Bon, A. Hurtado-Macias, O. Arnache, M.E. Gómez, W. Lopera, G. Zambrano, Effect of Zn concentration on the structure, morphology, and magnetic behavior of Ni1–xZnxFe2O4 ferrofluid. J. Supercond. Nov. Magn. 32, 2199–2208 (2019)

    Article  CAS  Google Scholar 

  16. M. Sahin, C. Misirli, M. Aras, Characteristic and magnetic properties of Ni1–xZnxFe2O4 ferrites. Materialwissenschaft und Werkstofftechnik 47, 53–63 (2016)

    Article  CAS  Google Scholar 

  17. C. Chen, T. Yao, S. Qian, Q. Zhang, X.M. Zhang, Blowing-combustion synthesis of sponge-like NixZn1–xFe2O4 and its structural and magnetic properties. Chem. Select 8, 1–5 (2023)

    Google Scholar 

  18. B. Nandan, M.C. Bhatnagar, S.C. Kashyap, Cation distribution in nanocrystalline cobalt substituted nickel ferrites: X-ray diffraction and Raman spectroscopic investigations. J. Phys. Chem. Solids. 129, 298–306 (2019)

    Article  CAS  Google Scholar 

  19. R. Chen, W. Wang, X. Zhao, Y. Zhang, S. Wu, F. Li, Rapid hydrothermal synthesis of magnetic CoxNi1–xFe2O4 nanoparticles and their application on removal of Congo red. Chem. Eng. J. 242, 226–233 (2014)

    Article  CAS  Google Scholar 

  20. Z. Li, G.X. Liu, Y. Ren, Microstructure and Raman spectroscopy analysis of LiNiZn ferrite ceramics sintered by spark plasma method. Ceram. Int. 49, 27837–27847 (2023)

    Article  CAS  Google Scholar 

  21. X.M. Zhang, Y. Liu, Z.Y. Liu, Y.F. Wang, Y.Q. Wang, L.B. Kong, Microwave absorption properties of nanocrystalline Ni1–xZnxFe2O4 synthesized by spraying-coprecipitation method. J. Magn. Magn. Mater. 560, 169647 (2022)

    Article  CAS  Google Scholar 

  22. P. Sharma, P. Thakur, J.L. Mattei, P. Queffelec, A. Thakur, Synthesis, structural, optical, electrical and Mossbauer spectroscopic studies of Co substituted Li0.5Fe2.5O4. J. Magn. Magn. Mater. 407, 17–23 (2016)

    Article  CAS  Google Scholar 

  23. S. Aliyeva, S. Babayev, T. Mehdiyev, Raman spectra of Ni1–xZnxFe2O4 nanopowders. Raman Spectrosc. 49, 271–278 (2018)

    Article  CAS  Google Scholar 

  24. A. Verma, T.C.T.C. Goel, R.G. Mendiratta, P. Kishan, Magnetic properties of nickel-zinc ferrites prepared by the citrate precursor method. J. Magn. Magn. Mater. 208, 13–19 (2000)

    Article  CAS  Google Scholar 

  25. A.M. Kumar, M.C. Varma, C.L. Dube, K.H. Rao, S.C. Kashyap, Development of NiZn nanoferrite core material with improved saturation magnetization and DC resistivity. J. Magn. Magn. Mater. 320, 1995–2000 (2008)

    Article  CAS  Google Scholar 

  26. A.K.M. Akther Hossain, M. Seki, T. Kawai, H. Tabata, Colossal magnetoresistance in Spinel Type Ni1–xZnxFe2O4. J. Appl. Phys. 96, 1273–1275 (2004)

    Article  CAS  Google Scholar 

  27. A. Galal, O. Sadek, M. Soliman, S. Ebrahim, M. Anas, Synthesis of nanosized nickel zinc ferrite using electric arc furnace dust and ferrous pickle liquor. Sci. Rep. 11, 20170 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. N.I. Abu-Elsaad, S.A. Mazen, H.M. Salem, The effect of zinc substitution and heat treatment on microstructural and magnetic properties of Li ferrite nanoparticles. J. Alloys Compd. 835, 155227 (2020)

    Article  CAS  Google Scholar 

  29. S.A. Mazen, N.I. Abu-Elsaad, A.S. Nawara, Studies on micro-structure and dc conductivity of polycrystalline Li0.5+0.5xSixFe2.5–1.5xO4 spinel ferrites. Powder Technol. 317, 339–347 (2017)

    Article  CAS  Google Scholar 

  30. A.K.M. Akther Hossain, S.T. Mahmud, M. Seki, T. Kawai, H. Tabata, Structural, electrical transport, and magnetic properties of Ni1–xZnxFe2O4. J. Magn. Magn. Mater. 312, 210–219 (2007)

    Article  Google Scholar 

Download references

Funding

This work was supported by the Project of State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology (Nos.20fksy23, 21fksy27 and 22fksy26).

Author information

Authors and Affiliations

Authors

Contributions

WL contributed toward conceptualization, methodology, formal analysis, resources, data curation, and writing—original draft. BD contributed toward resources and supervision. ZL contributed toward investigation, formal analysis, and writing—review and editing. HY contributed toward investigation. GL contributed toward formal analysis and writing—review and editing. FX contributed toward formal analysis and writing—review and editing

Corresponding author

Correspondence to Bo Dai.

Ethics declarations

Conflict of interest

All co-authors agreed to this submission, which has not been considered by any other journal.

Ethical approval

The full paper has not been submitted or published elsewhere and will not be submitted elsewhere until the journal editorial process is complete.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Dai, B., Li, Z. et al. Microstructure and magnetic properties of Ni–Zn ferrite ceramics with different Ni2+ contents. J Mater Sci: Mater Electron 35, 541 (2024). https://doi.org/10.1007/s10854-024-12101-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12101-w

Navigation