Skip to main content
Log in

Improved magnetic and dielectric properties for NiZn ferrites by using cold sintering-assisted process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The rapid advancement of information technology has necessitated the development of materials with enhanced properties. NiZn ferrite is one of the focal points among this area due to its superior magnetic and dielectric properties; however, the sintering temperature is usually > 1200 °C. In this study, dense Ni0.5Zn0.5Fe2O4 (NZFO) ceramics were synthesized by a cold sintering process (CSP) associated with a post heat treatment. The relative density for NZFO ceramics reaches a value of 97% when annealed at 1100 °C with saturation magnetization 79.3 emu/g and dielectric constant 22.1 at 1 MHz, which are higher than NZFO ceramics prepared by conventional sintering at 1100 °C. The improved performance for NZFO ceramics prepared by CSP-assisted process is ascribed to the higher density and fine microstructures. These findings suggest that cold sintering process technique holds promising potential for enhancing the performance of ferrite ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed the current study are available from the corresponding author on reasonable request.

References

  1. H. Mosallaei, K. Sarabandi, Magneto-dielectrics in electromagnetics: concept and applications. IEEE Trans. Antennas Propag. 52, 1558–1567 (2004). https://doi.org/10.1109/TAP.2004.829413

    Article  ADS  Google Scholar 

  2. Q. Li, Y. Chen, C. Yu, L. Young, J. Spector, V.G. Harris, Emerging magnetodielectric materials for 5G communications: 18H hexaferrites. Acta Mater. 231, 117854 (2022). https://doi.org/10.1016/j.actamat.2022.117854

    Article  CAS  Google Scholar 

  3. Y. Zou, J. Lin, W. Zhou, M. Yu, J. Deng, Z. Chen, G. Luo, D. Wang, Coexistence of high magnetic and dielectric properties in Ni-Zr co-doped barium hexaferrites. J. Alloy Compd. 907, 164516 (2022). https://doi.org/10.1016/j.jallcom.2022.164516

    Article  CAS  Google Scholar 

  4. K. Rajaram, J. Kim, Flexible wireless power transfer module implemented with aerojet-printing and laser-sintering of rigid NiZn–ferrite ceramic films. Nano Energy. 57, 317–326 (2019). https://doi.org/10.1016/j.nanoen.2018.12.021

    Article  CAS  Google Scholar 

  5. P. Yang, Z. Liu, H. Qi, Z. Peng, X. Fu, High-performance inductive couplers based on novel Ce3+ and Co2+ ions co-doped Ni-Zn ferrites. Ceram. Int. 45, 13685–13691 (2019). https://doi.org/10.1016/j.ceramint.2019.04.063

    Article  CAS  Google Scholar 

  6. S.B. Narang, K. Pubby, Nickel Spinel ferrites: a review. J. Magn. Magn. Mater. 519, 167163 (2021). https://doi.org/10.1016/j.jmmm.2020.167163

    Article  CAS  Google Scholar 

  7. A. Saini, A. Thakur, P. Thakur, Matching permeability and permittivity of Ni0.5Zn0.3Co0.2In0.1Fe1.9O4 ferrite for substrate of large bandwidth miniaturized antenna. J. Mater. Sci. Mater. Electron. 27, 2816–2823 (2016). https://doi.org/10.1007/s10854-015-4095-8

    Article  CAS  Google Scholar 

  8. G. Luo, Y. Hong, W. Zhou, Z. Cheng, C. Ma, Z. Wu, H. Huang, Effect of chromium substitution on structural, electrical and magnetic properties of NiZn ferrites. Trans. Nonferrous Met. Soc. China. 30, 1895–1903 (2020). https://doi.org/10.1016/S1003-6326(20)65348-1

    Article  CAS  Google Scholar 

  9. Y. Hong, W. Zhou, Z. Cheng, H. Huang, Z. Wu, S. Liao, G. Luo, Magnetic, electrical, and structural properties of Mg2+-doped nickel-zinc ferrite prepared by sol–gel–SHS method. J. Mater. Sci. Mater. Electron. 31, 16975–16982 (2020). https://doi.org/10.1007/s10854-020-04254-1

    Article  CAS  Google Scholar 

  10. G.S. Luo, W.P. Zhou, J.D. Li, Z.Y. Zhou, G.W. Jiang, W.S. Li, S.L. Tang, Y.W. Du, The influence of Nd3+ ions doping on structural, dielectric and magnetic properties of Ni–Zn ferrites. J. Mater. Sci. Mater. Electron. 28, 7259–7263 (2017). https://doi.org/10.1007/s10854-017-6408-6

    Article  CAS  Google Scholar 

  11. Z. Liu, Z. Peng, C. Lv, X. Fu, Doping effect of Sm3+ on magnetic and dielectric properties of Ni-Zn ferrites. Ceram. Int. 43, 1449–1454 (2017). https://doi.org/10.1016/j.ceramint.2016.10.112

    Article  CAS  Google Scholar 

  12. D.A. Vinnik, V.E. Zhivulin, D.P. Sherstyuk, A.Y. Starikov, P.A. Zezyulina, S.A. Gudkova, D.A. Zherebtsov, K.N. Rozanov, S.V. Trukhanov, K.A. Astapovich, A.S.B. Sombra, D. Zhou, R.B. Jotania, C. Singh, A.V. Trukhanov, Ni substitution effect on the structure, magnetization, resistivity and permeability of zinc ferrites. J. Mater. Chem. C 9, 5425–5436 (2021). https://doi.org/10.1039/d0tc05692h

    Article  CAS  Google Scholar 

  13. B.P. RAO, K.H. RAO, Effect of sintering conditions on resistivity and dielectric properties of Ni-Zn ferrites. J. Mater. Sci. 32, 6049–6054 (1997). https://doi.org/10.1023/A:1018683615616

    Article  ADS  CAS  Google Scholar 

  14. Y. Yang, J. Li, J. Zhao, X. Chen, G. Gan, G. Wang, L. He, Synthesis of nickel zinc ferrite ceramics on enhancing gyromagnetic properties by a novel low-temperature sintering approach for LTCC applications. J. Alloy Compd. 778, 8–14 (2019). https://doi.org/10.1016/j.jallcom.2018.11.144

    Article  CAS  Google Scholar 

  15. H. Su, H. Zhang, X. Tang, L. Jia, Q. Wen, Sintering characteristics and magnetic properties of NiCuZn ferrites for MLCI applications. Mater. Sci. Eng. B 129, 172–175 (2006). https://doi.org/10.1016/j.mseb.2006.01.008

    Article  CAS  Google Scholar 

  16. R. Guo, X. Zhang, Z. Yu, K. Sun, X. Jiang, C. Wu, Z. Lan, Effects of Bi2O3–CaCu3Ti4O12 composite additives on micromorphology, static magnetic properties, and FMR linewidth ∆H of NCZ ferrites. Ceram. Int. 46, 8877–8883 (2020). https://doi.org/10.1016/j.ceramint.2019.12.133

    Article  CAS  Google Scholar 

  17. J. Guo, H. Guo, A.L. Baker, M.T. Lanagan, E.R. Kupp, G.L. Messing, C.A. Randall, Cold Sintering: a paradigm shift for processing and integration of ceramics. Angew Chem. Int. Ed. 55, 11457–11461 (2016). https://doi.org/10.1002/anie.201605443

    Article  CAS  Google Scholar 

  18. H. Kähäri, M. Teirikangas, J. Juuti, H. Jantunen, Dielectric properties of lithium molybdate ceramic fabricated at room temperature. J. Am. Ceram. Soc. 97, 3378–3379 (2014). https://doi.org/10.1111/jace.13277

    Article  CAS  Google Scholar 

  19. H. Guo, A. Baker, J. Guo, C.A. Randall, Protocol for ultralow-temperature ceramic sintering: an integration of nanotechnology and the cold sintering process. ACS Nano 10, 10606–10614 (2016). https://doi.org/10.1021/acsnano.6b03800

    Article  CAS  PubMed  Google Scholar 

  20. J. Maria, X. Kang, R.D. Floyd, E.C. Dickey, H. Guo, J. Guo, A. Baker, S. Funihashi, C.A. Randall, Cold sintering: current status and prospects. J. Mater. Res. 32, 3205–3218 (2017). https://doi.org/10.1557/jmr.2017.262

    Article  ADS  CAS  Google Scholar 

  21. J. Guo, X. Zhao, T.H. De Beauvoir, J. Seo, S.S. Berbano, A.L. Baker, C. Azina, C.A. Randall, Recent progress in applications of the cold sintering process for ceramic-polymer composites. Adv. Funct. Mater. 28, 1801724 (2018). https://doi.org/10.1002/adfm.201801724

    Article  CAS  Google Scholar 

  22. S. Funahashi, J. Guo, H. Guo, K. Wang, A.L. Baker, K. Shiratsuyu, C.A. Randall, Demonstration of the cold sintering process study for the densification and grain growth of ZnO ceramics. J. Am. Ceram. Soc. 100, 546–553 (2017). https://doi.org/10.1111/jace.14617

    Article  CAS  Google Scholar 

  23. J. Guo, R. Floyd, S. Lowum, J. Maria, T.H. De Beauvoir, J. Seo, C.A. Randall, Cold sintering: progress, challenges, and future opportunities. Annu. Rev. Mater. Res. 49, 275–295 (2019). https://doi.org/10.1146/annurev-matsci-070218-010041

    Article  ADS  CAS  Google Scholar 

  24. A. Ndayishimiye, M.Y. Sengul, T. Sada, S. Dursun, S.H. Bang, Z.A. Grady, K. Tsuji, S. Funahashi, A.C.T. van Duin, C.A. Randall, Roadmap for densification in cold sintering: chemical pathways. Open. Ceram. 2, 100019 (2020). https://doi.org/10.1016/j.oceram.2020.100019

    Article  CAS  Google Scholar 

  25. C. Vakifahmetoglu, L. Karacasulu, Cold sintering of ceramics and glasses: a review, Curr. Opin. Solid State Mater. Sci. 24, 100807 (2020). https://doi.org/10.1016/j.cossms.2020.100807

    Article  CAS  Google Scholar 

  26. Q. Lai, J. Chen, F. Chang, J. Pei, Y. Liang, X. Chen, Q. Feng, Z. Cen, N. Luo, Cold sintering process assisted sintering for 8YSZ ceramic: a way of achieving high density and electrical conductivity at a reduced sintering temperature. Ceram. Int. 49, 14744–14749 (2023). https://doi.org/10.1016/j.ceramint.2023.01.070

    Article  CAS  Google Scholar 

  27. S. Lowum, R.D. Floyd, Y. Zhu, Z. Mao, J. Maria, Cold sintering of magnetic BaFe12O19 and other ferrites at 300°C. J. Mater. Sci. 56, 11229–11236 (2021). https://doi.org/10.1007/s10853-021-06011-z

    Article  ADS  CAS  Google Scholar 

  28. A. Serrano, E. García-Martín, C. Granados-Miralles, G. Gorni, J. López-Sánchez, S. Ruiz-Gómez, L. Pérez, A. Quesada, J.F. Fernández, Hexaferrite-based permanent magnets with upper magnetic properties by cold sintering process via a non-aqueous solvent. Acta Mater. 219, 117262 (2021). https://doi.org/10.1016/j.actamat.2021.117262

    Article  CAS  Google Scholar 

  29. M. Si, X. Li, C. Fu, X. Xue, X. Li, F. Wang, S. Han, J. Guo, Cold sintering assisted processing of Mn-Zn ferrites. J. Eur. Ceram. Soc. 43, 6145–6153 (2023). https://doi.org/10.1016/j.jeurceramsoc.2023.06.013

    Article  CAS  Google Scholar 

  30. M.A. Islam, A.K.M.A. Hossain, M.Z. Ahsan, M.A.A. Bally, M.S. Ullah, S.M. Hoque, F.A. Khan, Structural characteristics, cation distribution, and elastic properties of Cr3+ substituted stoichiometric and non-stoichiometric cobalt ferrites. RSC Adv. 12, 8502–8519 (2022). https://doi.org/10.1039/D1RA09090A

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. P.J. van der Zaag, P.J. van der Valk, M.T. Rekveldt, A domain size effect in the magnetic hysteresis of NiZn-ferrites. Appl. Phys. Lett. 69, 2927–2929 (1996). https://doi.org/10.1063/1.117326

    Article  ADS  Google Scholar 

  32. R. Grössinger, A critical examination of the law of approach to saturation. I. Fit procedure. Phys. Status Solidi A 66, 665–674 (1981). https://doi.org/10.1002/pssa.2210660231

    Article  ADS  Google Scholar 

  33. Z.W. Li, C.K. Ong, Z. Yang, F.L. Wei, X.Z. Zhou, J.H. Zhao, A.H. Morrish, Site preference and magnetic properties for a perpendicular recording material: BaFe12 –xZnx/2Zrx/2O19 nanoparticles. Phys. Rev. B 62, 6530–6537 (2000). https://doi.org/10.1103/PhysRevB.62.6530

    Article  ADS  CAS  Google Scholar 

  34. P. Yang, H. Qi, Z. Liu, X. Fu, Z. Peng, Microstructure, magnetism, and high-frequency performance of polycrystalline Ni0.5Zn0.5Sm0.025HoxFe1.975–xO4 ferrites. J. Am. Ceram. Soc. 102, 7469–7479 (2019). https://doi.org/10.1111/jace.16652

    Article  CAS  Google Scholar 

  35. A.M.M. Farea, S. Kumar, K.M. Batoo, A. Yousef, C.G. Lee, Alimuddin, Structure and electrical properties of Co0.5CdxFe2.5–xO4 ferrites. J. Alloy Compd. 464, 361–369 (2008). https://doi.org/10.1016/j.jallcom.2007.09.126

    Article  CAS  Google Scholar 

  36. K.W. Wagner, Zur theorie der unvollkommenen dielektrika. Ann. Phys. Berlin 345, 817–855 (1913). https://doi.org/10.1002/andp.19133450502

    Article  ADS  Google Scholar 

  37. Y. Bakış, I.A. Auwal, B. Ünal, A. Baykal, Maxwell-Wagner relaxation in grain boundary of BaBixLaxYxFe12–3xO19 (0.0 ≤ x ≤ 0.33) hexaferrites, Compos. Part. B Eng. 99, 248–256 (2016). https://doi.org/10.1016/j.compositesb.2016.06.047

    Article  CAS  Google Scholar 

  38. R.V. Mangalaraja, S.T. Lee, K.V.S. Ramam, S. Ananthakumar, P. Manohar, Mechanical characterization of Ni1 – xZnxFe2O4 prepared by non-conventional methods. Mater. Sci. Eng. A 480, 266–270 (2008). https://doi.org/10.1016/j.msea.2007.08.021

    Article  CAS  Google Scholar 

Download references

Funding

Author Weiping Zhou has received research support from National Natural Science Foundation of China (Grant No. 52061030), the Jiangxi Provincial Natural Science Foundation (ZBG20230418039), the “shuangqian” program (jxsq2019101047) of Jiangxi province. Author Guangsheng Luo has received research support from the Key Research and Key Projects Foundation of Jiangxi Province (20212BBE51013), and the Foundation of National Laboratory of Solid State Microstructures (M35026).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the manuscript. All authors read and approved the final manuscript. MY contributed toward investigation and validation; ZW contributed toward methodology and investigation; WZ contributed toward writing—review & editing and funding acquisition; JD contributed toward formal analysis; JM contributed toward software; TW contributed toward data curation; HW contributed toward data curation; LX contributed toward data curation; FG contributed toward data curation; ZC contributed toward software; GL contributed toward methodology.

Corresponding authors

Correspondence to Weiping Zhou or Guangsheng Luo.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Research involving human and animal participants

In addition, this article does not contain any studies involving human participants/animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, M., Wang, Z., Zhou, W. et al. Improved magnetic and dielectric properties for NiZn ferrites by using cold sintering-assisted process. J Mater Sci: Mater Electron 35, 334 (2024). https://doi.org/10.1007/s10854-024-12096-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12096-4

Navigation