Skip to main content
Log in

Enhanced electromagnetic wave absorption performance of rGO composites modified with atomically dispersed bi-metalic znic/cobalt sites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

An effective strategy for improving microwave absorbing performance was proposed in atomically dispersed bimetallic carbon-based composite materials. The atomically dispersed ZnCo-NC@rGO composites were synthesized though metal-mediated formamide (FA) condensation and carbonization. By adjusting the Co/Zn sites loading, the electromagnetic parameters and absorption performance could be effectively optimized. With the Co/Zn ratio of around 0.01, the minimum reflection loss (RLmin) reached − 26.63 dB at absorbing thickness of 1.50 mm, and the maximum effective absorption bandwidth (EAB, RL <  − 10 dB) was up to 4.52 GHz (12.78–17.30 GHz) at absorbing thickness of 1.60 mm, covering almost the Ku band. A stronger RLmin of − 59.63 dB was obtained with a thickness of 4.70 mm. Different loading of atomically dispersed metal sites induces variations in metal center and ligand structure. This endows ZnCo-NC@rGO excellent impedance matching and synergistic electromagnetic loss effects. In addition, the maximum radar cross section (RCS) reduction value was up to 26.94 dB m2 at a scattering angle of 0°. This study points out a feasible path for the fabrication of carbon-based ultralight synergistic absorbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the article.

References

  1. N. Chen, C. Wang, Y. Xiao, R. Han, Q. Wu, N. Song, Tunable microwave absorption properties of anisotropic Nd2Co17 micro-flakes. J. Alloys Compd. (2023). https://doi.org/10.1016/j.jallcom.2023.169554

    Article  Google Scholar 

  2. J. Qiu, J. Liao, G. Wang, R. Du, N. Tsidaeva, W. Wang, Implanting N-doped CQDs into rGO aerogels with diversified applications in microwave absorption and wastewater treatment. Chem. Eng. J. 443, 136475 (2022). https://doi.org/10.1016/j.cej.2022.136475

    Article  CAS  Google Scholar 

  3. C. Wang, N. Chen, Y. Xiao, J. He, R. Han, N. Song, Exceeding natural resonance frequency limit and enhanced microwave absorption performance of Fe3O4 nanorods coated with SiO2 layer. Ceram. Int. 49, 36233–36243 (2023). https://doi.org/10.1016/j.ceramint.2023.08.304

    Article  CAS  Google Scholar 

  4. J. Ding, L. Cheng, Core-shell Fe3O4@ SiO2@ PANI composite: preparation, characterization, and applications in microwave absorption. J. Alloys Compd. 881, 160574 (2021). https://doi.org/10.1016/j.jallcom.2021.160574

    Article  CAS  Google Scholar 

  5. W. Gu, S.J.H. Ong, Y. Shen, W. Guo, Y. Fang, G. Ji, Z. Xu, A lightweight, elastic, and thermally insulating stealth foam with high infrared-radar compatibility. Adv. Sci. 9, 2204165 (2022). https://doi.org/10.1002/advs.202204165

    Article  CAS  Google Scholar 

  6. M. Wu, X. Liang, Y. Zheng, C. Qian, D. Wang, Excellent microwave absorption performances achieved by optimizing core@ shell structures of Fe3O4@ 1T/2H-MoS2 composites. J. Alloys Compd. 910, 164881 (2022). https://doi.org/10.1016/j.jallcom.2022.164881

    Article  CAS  Google Scholar 

  7. B. Jiang, C. Qi, H. Yang, X. Wu, W. Yang, C. Zhang, S. Li, L. Wang, Y. Li, Recent advances of carbon-based electromagnetic wave absorption materials facing the actual situations. Carbon 208, 390–409 (2023). https://doi.org/10.1016/j.carbon.2023.04.002

    Article  CAS  Google Scholar 

  8. J. Sun, X. Huang, Y. Liu, K. Zhang, Y. Yan, Y. Liu, X. Yan, Enhanced microwave absorption performance originated from interface and unrivaled impedance matching of SiO2/carbon fiber. Appl. Surface Sci. (2023). https://doi.org/10.1016/j.apsusc.2023.157029

    Article  Google Scholar 

  9. W. Yu, G. Shao, Morphology engineering of defective graphene for microwave absorption. J. Coll. Interface Sci. 640, 680–687 (2023). https://doi.org/10.1016/j.jcis.2023.02.140

    Article  ADS  CAS  Google Scholar 

  10. Y. Qi, Y. Yang, H. Sun, Y. Zhang, Y. Ma, C. Ni, X. Zhang, B. Wang, R. Yu, W. Du, Three-dimensional melamine sponge hollow carbon/Ni3ZnC0. 7/carbon nanotubes with tunable high-performance microwave absorption performance. Synth. Met. 295, 117351 (2023). https://doi.org/10.1016/j.synthmet.2023.117351

    Article  CAS  Google Scholar 

  11. L. Zhang, X. Zhao, Y. Ma, Y. Shu, R. Zhang, J. Xiang, B. Wang, C. Mu, K. Zhai, T. Xue, Preparation and microwave absorption properties of tellurium doped black phosphorus nanoflakes and graphite nanoflakes composites. J. Alloys Compd. (2023). https://doi.org/10.1016/j.jallcom.2023.168700

    Article  Google Scholar 

  12. Q. Ma, Z. Xu, X. Li, X. Cheng, Core-shell CuCo2S4 based microspheres composited with carbon black nanoparticles for effective microwave absorption. J. Alloys Compd. 938, 168577 (2023). https://doi.org/10.1016/j.jallcom.2022.168577

    Article  CAS  Google Scholar 

  13. W. Ye, J. Fu, Q. Wang, C. Wang, D. Xue, Electromagnetic wave absorption properties of NiCoP alloy nanoparticles decorated on reduced graphene oxide nanosheets. J. Magn. Magn. Mater. 395, 147–151 (2015). https://doi.org/10.1016/j.jmmm.2015.07.087

    Article  ADS  CAS  Google Scholar 

  14. C. Qian, X. Liang, M. Wu, X. Zhang, Lightweight chain-typed magnetic Fe3O4@ rGO composites with enhanced microwave-absorption properties. Nanomaterials 12, 3699 (2022). https://doi.org/10.3390/nano12203699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. X. Gao, X. Wang, J. Cai, Y. Zhang, J. Zhang, S. Bi, Z.-L. Hou, CNT cluster arrays grown on carbon fiber for excellent green EMI shielding and microwave absorbing. Carbon 211, 118083 (2023). https://doi.org/10.1016/j.carbon.2023.118083

    Article  CAS  Google Scholar 

  16. L. Yan, L. Li, X. Ru, D. Wen, L. Ding, X. Zhang, H. Diao, Y. Qin, Core-shell, wire-in-tube and nanotube structures: carbon-based materials by molecular layer deposition for efficient microwave absorption. Carbon 173, 145–153 (2021). https://doi.org/10.1016/j.carbon.2020.10.095

    Article  CAS  Google Scholar 

  17. W. Yang, B. Jiang, Z. Liu, R. Li, L. Hou, Z. Li, Y. Duan, X. Yan, F. Yang, Y. Li, Magnetic coupling engineered porous dielectric carbon within ultralow filler loading toward tunable and high-performance microwave absorption. J. Mater. Sci. Technol. 70, 214–223 (2021). https://doi.org/10.1016/j.jmst.2020.08.059

    Article  CAS  Google Scholar 

  18. G.M. Li, B.S. Zhu, L.P. Liang, Y.M. Tian, L.C. Wang, Core-shell Co3Fe7@ C composite as efficient microwave absorbent. Acta Phys. Chim. Sin. 33, 1715–1720 (2017). https://doi.org/10.3866/PKU.WHXB201704174

    Article  CAS  Google Scholar 

  19. H. Wang, Z. Yan, J. An, J. He, Y. Hou, H. Yu, N. Ma, G. Yu, D. Sun, Iron cobalt/polypyrrole nanoplates with tunable broadband electromagnetic wave absorption. RSC Adv. 6, 92152–92158 (2016). https://doi.org/10.1039/C6RA16003D

    Article  ADS  CAS  Google Scholar 

  20. L. Liang, Q. Li, X. Yan, Y. Feng, Y. Wang, H.-B. Zhang, X. Zhou, C. Liu, C. Shen, X. Xie, Multifunctional magnetic Ti3C2T x MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 15, 6622–6632 (2021). https://doi.org/10.1021/acsnano.0c09982

    Article  CAS  PubMed  Google Scholar 

  21. P. Liu, S. Gao, G. Zhang, Y. Huang, W. You, R. Che, Hollow engineering to Co@ N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Func. Mater. 31, 2102812 (2021). https://doi.org/10.1002/adfm.202102812

    Article  CAS  Google Scholar 

  22. L. Zhang, X. Yu, H. Hu, Y. Li, M. Wu, Z. Wang, G. Li, Z. Sun, C. Chen, Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature. Sci. Rep. 5, 1–9 (2015). https://doi.org/10.1038/srep09298

    Article  CAS  Google Scholar 

  23. X. Ding, Y. Huang, S. Li, N. Zhang, J. Wang, 3D architecture reduced graphene oxide-MoS2 composite: preparation and excellent electromagnetic wave absorption performance. Compos. Part A Appl. Sci. Manuf. 90, 424–432 (2016). https://doi.org/10.1016/j.compositesa.2016.08.006

    Article  CAS  Google Scholar 

  24. Y. Qiao, J. Xiao, Q. Jia, L. Lu, H. Fan, Preparation and microwave absorption properties of ZnFe2O4/polyaniline/graphene oxide composite. Results Phys. (2019). https://doi.org/10.1016/j.rinp.2019.102221

    Article  Google Scholar 

  25. F. Ebrahimi-Tazangi, J. Seyed-Yazdi, S.H. Hekmatara, α-Fe2O3@CoFe2O4/GO nanocomposites for broadband microwave absorption by surface/interface effects. J. Alloys Compd. (2022). https://doi.org/10.1016/j.jallcom.2021.1633406

    Article  Google Scholar 

  26. X. Xu, G. Wang, G. Wan, S. Shi, C. Hao, Y. Tang, G. Wang, Magnetic Ni/graphene connected with conductive carbon nano-onions or nanotubes by atomic layer deposition for lightweight and low-frequency microwave absorption. Chem. Eng. J. 382, 122980 (2020). https://doi.org/10.1016/j.cej.2019.122980

    Article  CAS  Google Scholar 

  27. W. Li, Y. Liu, F. Guo, Y. Du, Y. Chen, Self-assembly sandwich-like Fe Co, or Ni nanoparticles/reduced graphene oxide composites with excellent microwave absorption performance. Appl. Surface Sci. (2021). https://doi.org/10.1016/j.apsusc.2021.150212

    Article  Google Scholar 

  28. P. Xie, Y. Liu, M. Feng, M. Niu, C. Liu, N. Wu, K. Sui, R.R. Patil, D. Pan, Z. Guo, Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv. Compos. Hybrid Mater. 4, 173–185 (2021). https://doi.org/10.1007/s42114-020-00202-z

    Article  CAS  Google Scholar 

  29. P. Liu, Y. Huang, J. Yan, Y. Zhao, Magnetic graphene@ PANI@ porous TiO2 ternary composites for high-performance electromagnetic wave absorption. J. Mater. Chem. C 4, 6362–6370 (2016). https://doi.org/10.1039/C6TC01718E

    Article  CAS  Google Scholar 

  30. Z. Li, X. Li, Y. Zong, G. Tan, Y. Sun, Y. Lan, M. He, Z. Ren, X. Zheng, Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers. Carbon 115, 493–502 (2017). https://doi.org/10.1016/j.carbon.2017.01.036

    Article  CAS  Google Scholar 

  31. Y. Qu, Z. Liu, X. Li, Y. Si, R. Xu, D. Liu, Ultrafine well-dispersed Co nanocrystals onto crumpled sphere-like rGO for superior low-frequency microwave absorption. Carbon 213, 118280 (2023). https://doi.org/10.1016/j.carbon.2023.118280

    Article  CAS  Google Scholar 

  32. Y. Wang, X. Wu, W. Zhang, S. Huang, Facile synthesis of Ni/PANI/RGO composites and their excellent electromagnetic wave absorption properties. Synth. Met. 210, 165–170 (2015). https://doi.org/10.1016/j.synthmet.2015.09.022

    Article  CAS  Google Scholar 

  33. Y. Yin, M. Zeng, J. Liu, W. Tang, H. Dong, R. Xia, R. Yu, Enhanced high-frequency absorption of anisotropic Fe3O4/graphene nanocomposites. Sci. Rep. 6, 25075 (2016). https://doi.org/10.1038/srep25075

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. X. Zheng, J. Feng, Y. Zong, H. Miao, X. Hu, J. Bai, X. Li, Hydrophobic graphene nanosheets decorated by monodispersed superparamagnetic Fe3O4 nanocrystals as synergistic electromagnetic wave absorbers. J. Mater. Chem. C 3, 4452–4463 (2015). https://doi.org/10.1039/C5TC00313J

    Article  CAS  Google Scholar 

  35. J. Yang, W. Li, D. Wang, Y. Li, Electronic metal–support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 32, 2003300 (2020). https://doi.org/10.1002/adma.202003300

    Article  CAS  Google Scholar 

  36. C. Zhu, S. Fu, Q. Shi, D. Du, Y. Lin, Single-atom electrocatalysts. Angew. Chem. Int. Ed. 56, 13944–13960 (2017). https://doi.org/10.1002/anie.201703864

    Article  CAS  Google Scholar 

  37. H. Lv, Z. Yang, P.L. Wang, G. Ji, J. Song, L. Zheng, H. Zeng, Z. Xu, A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 30, 1706343 (2018). https://doi.org/10.1002/adma.201706343

    Article  CAS  Google Scholar 

  38. J. Xu, M. Liu, X. Zhang, B. Li, X. Zhang, X. Zhang, C. Zhu, Y. Chen, Atomically dispersed cobalt anchored on N-doped graphene aerogels for efficient electromagnetic wave absorption with an ultralow filler ratio. Appl. Phys. Rev. (2022). https://doi.org/10.1063/5.0067791

    Article  PubMed  PubMed Central  Google Scholar 

  39. H. Yuan, B. Li, C. Zhu, Y. Xie, Y. Jiang, Y. Chen, Dielectric behavior of single iron atoms dispersed on nitrogen-doped nanocarbon. Appl. Phys. Lett. (2020). https://doi.org/10.1063/1.5143154

    Article  Google Scholar 

  40. R. Patil, T. Dey, L. Kang, S. Liu, S.C. Jun, S. Dutta, Electronic and structural engineering of atomically dispersed isolated single-atom and alloy architectures. Small 19, 2301675 (2023). https://doi.org/10.1002/smll.202301675

    Article  CAS  Google Scholar 

  41. X. Zhang, Y. Shi, J. Xu, Q. Ouyang, X. Zhang, C. Zhu, X. Zhang, Y. Chen, Identification of the intrinsic dielectric properties of metal single atoms for electromagnetic wave absorption. Nano-Micro Lett. 14, 1–17 (2022). https://doi.org/10.1007/s40820-021-00773-6

    Article  ADS  CAS  Google Scholar 

  42. B. Li, Z. Ma, J. Xu, X. Zhang, Y. Chen, C. Zhu, Regulation of impedance matching and dielectric loss properties of N-doped carbon hollow nanospheres modified with atomically dispersed cobalt sites for microwave energy attenuation. Small (2023). https://doi.org/10.1002/smll.202301226

    Article  PubMed  PubMed Central  Google Scholar 

  43. R. Shu, W. Li, Y. Wu, J. Zhang, G. Zhang, M. Zheng, Fabrication of nitrogen-doped cobalt oxide/cobalt/carbon nanocomposites derived from heterobimetallic zeolitic imidazolate frameworks with superior microwave absorption properties. Compos. B Eng. 178, 107518 (2019). https://doi.org/10.1016/j.compositesb.2019.107518

    Article  CAS  Google Scholar 

  44. H. Xu, X. Yin, M. Zhu, M. Li, H. Zhang, H. Wei, L. Zhang, L. Cheng, Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full X band microwave absorption. Carbon 142, 346–353 (2019). https://doi.org/10.1016/j.carbon.2018.10.056

    Article  CAS  Google Scholar 

  45. R. Shu, W. Li, Y. Wu, J. Zhang, G. Zhang, Nitrogen-doped Co-C/MWCNTs nanocomposites derived from bimetallic metal–organic frameworks for electromagnetic wave absorption in the X-band. Chem. Eng. J. 362, 513–524 (2019). https://doi.org/10.1016/j.cej.2019.01.090

    Article  CAS  Google Scholar 

  46. Y. Jia, Y. Wang, G. Zhang, C. Zhang, K. Sun, X. Xiong, J. Liu, X. Sun, Pyrolysis-free formamide-derived N-doped carbon supporting atomically dispersed cobalt as high-performance bifunctional oxygen electrocatalyst. J. Energy Chem. 49, 283–290 (2020). https://doi.org/10.1016/j.jechem.2020.01.0341

    Article  Google Scholar 

  47. G. Zhang, Y. Jia, C. Zhang, X. Xiong, K. Sun, R. Chen, W. Chen, Y. Kuang, L. Zheng, H. Tang, A general route via formamide condensation to prepare atomically dispersed metal–nitrogen–carbon electrocatalysts for energy technologies. Energy Environ. Sci. 12, 1317–1325 (2019). https://doi.org/10.1039/C9EE00162J

    Article  CAS  Google Scholar 

  48. M. Li, X. Yin, H. Xu, X. Li, L. Cheng, L. Zhang, Interface evolution of a C/ZnO absorption agent annealed at elevated temperature for tunable electromagnetic properties. J. Am. Ceram. Soc. 102, 5305–5315 (2019). https://doi.org/10.1111/jace.16404

    Article  CAS  Google Scholar 

  49. D. Ding, Y. Wang, X. Li, R. Qiang, P. Xu, W. Chu, X. Han, Y. Du, Rational design of core-shell Co@ C microspheres for high-performance microwave absorption. Carbon 111, 722–732 (2017). https://doi.org/10.1016/j.carbon.2016.10.059

    Article  CAS  Google Scholar 

  50. L. Wang, R. Mao, M. Huang, H. Jia, Y. Li, X. Li, Y. Cheng, J. Liu, J. Zhang, L. Wu, Heterogeneous interface engineering of high-density MOFs-derived Co nanoparticles anchored on N-doped RGO toward wide-frequency electromagnetic wave absorption. Mater. Today Phys. 35, 101128 (2023). https://doi.org/10.1016/j.mtphys.2023.101128

    Article  CAS  Google Scholar 

  51. L. Yan, J. Xiang, G. Guan, H. Zhang, Y. Zhang, K. Zhang, Tunable high-performance microwave absorption of cobalt nanoparticles wrapped in N-self-doped carbon nanofibers at ultralow filler loadings. J. Alloys Compd. 933, 167808 (2023). https://doi.org/10.1016/j.jallcom.2022.167808

    Article  CAS  Google Scholar 

  52. S. Wang, Y. Wang, C. Sun, S. Qi, B. Wang, D. Li, G. Wu, Multifunctional carbon nanofibers coated Co-Zn alloy nanoparticles composite for efficient energy conversion and microwave absorption. J. Alloys Compd. 932, 167458 (2023). https://doi.org/10.1016/j.jallcom.2022.167458

    Article  CAS  Google Scholar 

  53. X. Meng, S. Dong, Design and construction of lightweight C/Co heterojunction nanofibres for enhanced microwave absorption performance. J. Alloys Compd. 810, 151806 (2019). https://doi.org/10.1016/j.jallcom.2019.151806

    Article  CAS  Google Scholar 

  54. J. Hu, C. Liang, J. Li, Y. Liang, S. Li, G. Li, Z. Wang, D. Dong, Flexible reduced graphene oxide@ Fe3O4/silicone rubber composites for enhanced microwave absorption. Appl. Surf. Sci. 570, 151270 (2021). https://doi.org/10.1016/j.apsusc.2021.151270

    Article  CAS  Google Scholar 

  55. Y. Shi, B. Li, X. Jiang, X. Zhang, X. Zhang, Y. Chen, C. Zhu, The enhanced dielectric property of the graphene composite anchored with non-planar iron single-atoms. Appl. Phys. Lett. 121, 073102 (2022). https://doi.org/10.1063/5.0099781

    Article  CAS  Google Scholar 

  56. S. Wang, W. Wang, S. Gu, G. Zhang, N. Song, A general approach to homogeneous sub-nanometer metallic particle/graphene composites by S-coordinator. Solid State Commun. 273, 17–22 (2018). https://doi.org/10.1016/j.ssc.2018.02.007

    Article  ADS  CAS  Google Scholar 

  57. S. Shi, P. Mou, D. Wang, X. Li, S. Teng, M. Zhou, X. Yu, Z. Deng, G. Wan, G. Wang, Co/carbon nanofiber with adjustable size and content of Co nanoparticles for tunable microwave absorption and thermal conductivity. Journal of Materiomics (2023). https://doi.org/10.1016/j.jmat.2023.04.010

    Article  Google Scholar 

  58. N. Yang, J. Zeng, J. Xue, L. Zeng, Y. Zhao, Strong absorption and wide-frequency microwave absorption properties of the nanostructure zinc oxide/zinc/carbon fiber multilayer composites. J. Alloys Compd. 735, 2212–2218 (2018). https://doi.org/10.1016/j.jallcom.2017.11.380

    Article  CAS  Google Scholar 

  59. H. Xu, X. Yin, M. Zhu, M. Han, Z. Hou, X. Li, L. Zhang, L. Cheng, Carbon hollow microspheres with a designable mesoporous shell for high-performance electromagnetic wave absorption. ACS Appl. Mater. Interfaces 9, 6332–6341 (2017). https://doi.org/10.1021/acsami.6b15826

    Article  CAS  PubMed  Google Scholar 

  60. N. Chen, Y. Xiao, C. Wang, J. He, N. Song, Dual resonance behavior and enhanced microwave absorption performance of Fe3O4@ C@ MoS2 composites with shape magnetic anisotropy. ACS Appl. Mater. Interfaces 15, 48529–48542 (2023). https://doi.org/10.1021/acsami.3c10316

    Article  CAS  PubMed  Google Scholar 

  61. Y. Zhao, H. Zhang, X. Yang, H. Huang, G. Zhao, T. Cong, X. Zuo, S. Yang, L. Pan, In situ construction of hierarchical core–shell Fe3O4@ C nanoparticles–helical carbon nanocoil hybrid composites for highly efficient electromagnetic wave absorption. Carbon 171, 395–408 (2021). https://doi.org/10.1016/j.carbon.2020.09.036

    Article  CAS  Google Scholar 

  62. M. Yu, Y. Huang, X. Liu, X. Zhao, W. Fan, K. She, In situ modification of MXene nanosheets with polyaniline nanorods for lightweight and broadband electromagnetic wave absorption. Carbon 208, 311–321 (2023). https://doi.org/10.1016/j.carbon.2023.03.066

    Article  CAS  Google Scholar 

  63. J. Shu, X. Yang, X. Zhang, X. Huang, M. Cao, L. Li, H. Yang, W. Cao, Tailoring MOF-based materials to tune electromagnetic property for great microwave absorbers and devices. Carbon 162, 157–171 (2020). https://doi.org/10.1016/j.carbon.2020.02.047

    Article  CAS  Google Scholar 

  64. C. Zhou, Z. Yao, B. Wei, W. Li, Z. Li, X. Tao, J. Zhou, Facile synthesis of ZIF-67 derived dodecahedral C/NiCO2S4 with broadband microwave absorption performance. Nanoscale 14, 10375–10388 (2022). https://doi.org/10.1039/D2NR02490J

    Article  CAS  PubMed  Google Scholar 

  65. L. Olmedo, P. Hourquebie, F. Jousse, Microwave absorbing materials based on conducting polymers. Adv. Mater. 5, 373–377 (1993). https://doi.org/10.1002/adma.19930050509

    Article  CAS  Google Scholar 

  66. J. Yan, Z. Ye, W. Chen, P. Liu, Y. Huang, Metal Mo and nonmetal N, S co-doped 3D flowers-like porous carbon framework for efficient electromagnetic wave absorption. Carbon 216, 118563 (2024). https://doi.org/10.1016/j.carbon.2023.118563

    Article  CAS  Google Scholar 

  67. F. Ebrahimi-Tazangi, S.H. Hekmatara, J. Seyed-Yazdi, Synthesis and remarkable microwave absorption properties of amine-functionalized magnetite/graphene oxide nanocomposites. J. Alloys Compd. 809, 151779 (2019). https://doi.org/10.1016/j.jallcom.2019.151779

    Article  CAS  Google Scholar 

  68. D. Li, H. Liao, H. Kikuchi, T. Liu, Microporous Co@ C nanoparticles prepared by dealloying CoAl@ C precursors: achieving strong wideband microwave absorption via controlling carbon shell thickness. ACS Appl. Mater. Interfaces 9, 44704–44714 (2017). https://doi.org/10.1021/acsami.7b13538

    Article  CAS  PubMed  Google Scholar 

  69. Y. Xiao, J. He, N. Chen, C. Wang, N. Song, Enhanced microwave absorption performance of large-sized monolayer two-dimensional Ti3C2Tx based on loaded Fe3O4 nanoparticles. Acta Physica Sinica (2023). https://doi.org/10.7498/aps.72.20231200

    Article  Google Scholar 

  70. P. Toneguzzo, G. Viau, O. Acher, F. Fiévet-Vincent, F. Fiévet, Monodisperse ferromagnetic particles for microwave applications. Adv. Mater. 10, 1032–1035 (1998). https://doi.org/10.1002/(SICI)1521-4095(199809)10:13%3c1032::AID-ADMA1032%3e3.0.CO;2-M

    Article  CAS  Google Scholar 

  71. R. Han, P. Shen, L. Qiao, H. Chen, Y. Fang, Z. Guo, S. Dong, M. Zhu, D. Zhou, F. Li, High frequency properties of 2D Sm2Fe14B nanoflakes with bianisotropy. J. Magn. Magn. Mater. 529, 167859 (2021). https://doi.org/10.1016/j.jmmm.2021.167859

    Article  CAS  Google Scholar 

  72. C. Qiang, J. Xu, Z. Zhang, L. Tian, S. Xiao, Y. Liu, P. Xu, Magnetic properties and microwave absorption properties of carbon fibers coated by Fe3O4 nanoparticles. J. Alloys Compd. 506, 93–97 (2010). https://doi.org/10.1016/j.jallcom.2010.06.193

    Article  CAS  Google Scholar 

  73. X. Liu, X. Lu, H. Guan, X. Liu, M. Wang, C. Wang, D. Zhao, Z. Xia, Rational design of ZnO/ZnO nanocrystal-modified rGO foam composites with wide-frequency microwave absorption properties. Ceram. Int. 47, 33584–33595 (2021). https://doi.org/10.1016/j.ceramint.2021.08.268

    Article  CAS  Google Scholar 

  74. X. Zhao, Y. Huang, X. Liu, J. Yan, L. Ding, M. Zong, P. Liu, T. Li, Core-shell CoFe2O4@ C nanoparticles coupled with rGO for strong wideband microwave absorption. J. Coll. Interface Sci. 607, 192–202 (2022). https://doi.org/10.1016/j.jcis.2021.08.203

    Article  ADS  CAS  Google Scholar 

  75. Z. Hou, J. Xue, H. Wei, X. Fan, F. Ye, S. Fan, L. Cheng, L. Zhang, Tailorable microwave absorption properties of RGO/SiC/CNT nanocomposites with 3D hierarchical structure. Ceram. Int. 46, 18160–18167 (2020). https://doi.org/10.1016/j.ceramint.2020.04.137

    Article  CAS  Google Scholar 

  76. A. Das, P. Negi, S.K. Joshi, A. Kumar, Enhanced microwave absorption properties of Co and Ni co-doped iron (II, III)/reduced graphene oxide composites at X-band frequency. J. Mater. Sci. Mater. Electron. 30, 19325–19334 (2019). https://doi.org/10.1007/s10854-019-02293-x

    Article  CAS  Google Scholar 

  77. C. Fu, D. He, Y. Wang, X. Zhao, Enhanced microwave absorption performance of RGO-modified Co@ C nanorods. Synth. Met. 257, 116187 (2019). https://doi.org/10.1016/j.synthmet.2019.116187

    Article  CAS  Google Scholar 

  78. I. Abdalla, A. Elhassan, J. Yu, Z. Li, B. Ding, A hybrid comprised of porous carbon nanofibers and rGO for efficient electromagnetic wave absorption. Carbon 157, 703–713 (2020). https://doi.org/10.1016/j.carbon.2019.11.004

    Article  CAS  Google Scholar 

  79. Y. Wu, S. Tan, P. Liu, Y. Zhang, P. Li, G. Ji, Controllable heterogeneous interfaces and dielectric regulation of hollow raspberry-shaped Fe3O4@ rGO hybrids for high-performance electromagnetic wave absorption. J. Mater. Sci. Technol. 151, 10–18 (2023). https://doi.org/10.1016/j.jmst.2022.12.018

    Article  CAS  Google Scholar 

  80. G. Li, S. Ma, Z. Li, Y. Zhang, J. Diao, L. Xia, Z. Zhang, Y. Huang, High-quality ferromagnet Fe3GeTe2 for high-efficiency electromagnetic wave absorption and shielding with wideband radar cross section reduction. ACS Nano 16, 7861–7879 (2022). https://doi.org/10.1021/acsnano.2c00512

    Article  CAS  PubMed  Google Scholar 

  81. F. Dong, B. Dai, H. Zhang, Y. Shi, R. Zhao, X. Ding, H. Wang, T. Li, M. Ma, Y. Ma, Fabrication of hierarchical reduced graphene oxide decorated with core-shell Fe3O4@ polypyrrole heterostructures for excellent electromagnetic wave absorption. J. Coll. Interface Sci. (2023). https://doi.org/10.1016/j.jcis.2023.06.085

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Sciences Foundation of China (51872021).

Author information

Authors and Affiliations

Authors

Contributions

JH: Sample preparation, experiment, data collection, interpretation of the results, and writing of the manuscript. GZ: Sample preparation. YX and CW contributed to the analysis and discussion for the results. NS: Conceptualization, supervision, interpretation of results, reviewing and editing of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ningning Song.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1994 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Zhang, G., Xiao, Y. et al. Enhanced electromagnetic wave absorption performance of rGO composites modified with atomically dispersed bi-metalic znic/cobalt sites. J Mater Sci: Mater Electron 35, 354 (2024). https://doi.org/10.1007/s10854-024-12080-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12080-y

Navigation