Skip to main content
Log in

Effect of cerium substitution on structural, optical, electrical transport and magnetic properties of spinel cobaltite synthesized through citrate-nitrate method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Correction to this article was published on 19 February 2024

This article has been updated

Abstract

The copper cobaltite samples of Cu1 − xCexCo2O4 (x = 0, 0.05, 0.1) were synthesized by the simple citrate-nitrate method. The cubic spinel structure of all the synthesized samples was confirmed using X-ray diffraction (XRD). A decrease in crystallite size from 28 nm to 23 nm was observed with the addition of Ce as dopant. A clear variation in lattice parameters was seen, demonstrating the adherence of the synthesized samples to Vegard’s rule. The effect of doping on microstructural parameters like space group, lattice constant (a), volume of the unit cell(a3) and density(ρ) was calculated using Rietveld refinement analysis and the computed results was found well correlated with the experimental one. The FTIR spectra results complemented the spinel structure. Spherical shaped morphology was observed using HR-SEM analysis and element composition was confirmed using EDAX. The optical analysis inferred the occurrence of two optical energy gaps around 1.6 eV and 2.1 eV in all samples. These optical band gaps were found to decrease with Ce3+ doping, as indicated by the red shifts in the optical spectra. A decline in the dielectric constant with an increase in AC conductivity was observed in all the samples. Electric modulus and impedance studies elucidated the shift of relaxation peaks at higher frequency domain. The magnetic measurements investigated using VSM indicated the weak antiferromagnetic nature of Cu1 − xCexCo2O4. The substitution of cerium reduced the coercivity of Cu1 − xMxCo2O4 which makes it suitable for magnetic recording media applications. The dielectric and magnetic characteristics confirms that these materials are well-suited for its use in Multi-layer chip inductors (MLCI) circuit applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

Change history

References

  1. T.H. Dolla, K. Pruessner, D.G. Billing, C. Sheppard, A. Prinsloo, P. Ndungu et al., Synthesis, structural characterization, and magnetic properties of mixed ternary spinel-type Mn-Ni-Co oxides [Internet]. Dolla / Materials Today: Proceedings. 2018. Available from: www.sciencedirect.comwww.materialstoday.com/proceedings2214-7853

  2. B. Mandal, R. Roy, P. Mitra, Fabrication of different rare earth incorporated ZnCo2O4 matrix via chemical-mechanical hybrid mechanism and study their charge carrier dynamics by Motts VRH model. J. Alloys Compd. 879, 160432 (2021)

    Article  CAS  Google Scholar 

  3. Z.K. Heiba, N.M. Farag, A.M. El-naggar, J.R. Plaisier, A.M. Aldhafiri, M.B. Mohamed, Influence of Cr and Fe doping on the structure, magnetic and optical properties of nano CuCo2O4. Ceram. Int. 47, 7888–7897 (2021)

    Article  CAS  Google Scholar 

  4. H. Behzad, F.E. Ghodsi, H. Karaağaç, High electrochemical performance of CuxCo3 – xO4 nanostructured electrodes: the effect of spinel inversion and annealing temperature. Ionics (Kiel). 23, 2429–2442 (2017)

    Article  CAS  Google Scholar 

  5. C.R. Mariappan, R. Kumar, G. Vijaya Prakash, Functional properties of ZnCo2O4 nano-particles obtained by thermal decomposition of a solution of binary metal nitrates. RSC Adv. 5, 26843–26849 (2015)

    Article  ADS  CAS  Google Scholar 

  6. J. Cheng, H. Yan, Y. Lu, K. Qiu, X. Hou, J. Xu et al., Mesoporous CuCo2O4 nanograsses as multi-functional electrodes for supercapacitors and electro-catalysts. J. Mater. Chem. A Mater. 3, 9769–9776 (2015)

    Article  CAS  Google Scholar 

  7. M. Bhardwaj, A. Suryawanshi, R. Fernandes, S. Tonda, A. Banerjee, D. Kothari et al., CuCo2O4 nanowall morphology as Li-ion battery anode: enhancing electrochemical performance through stoichiometry control. Mater. Res. Bull. 90, 303–310 (2017)

    Article  CAS  Google Scholar 

  8. R. Nakhowong, R. Chueachot, Synthesis and magnetic properties of copper cobaltite (CuCo2O4) fibers by electrospinning. J. Alloys Compd. 715, 390–396 (2017)

    Article  CAS  Google Scholar 

  9. Y.Z. Su, Q.Z. Xu, G.F. Chen, H. Cheng, N. Li, Z.Q. Liu, One dimensionally spinel NiCo2O4 nanowire arrays: facile synthesis, water oxidation, and magnetic properties. Electrochim. Acta. 174, 1216–1224 (2015)

    Article  CAS  Google Scholar 

  10. P. Saxena, D. Varshney, Effect of d-block element substitution on structural and dielectric properties on iron cobaltite. J. Alloys Compd. 705, 320–326 (2017)

    Article  CAS  Google Scholar 

  11. H. Wang, C. Zhen, D. Xu, X. Wu, L. Ma, D. Zhao et al., Multiple magnetic phase transitions in NixMn1–xCo2O4. Ceram. Int. 46, 16126–16134 (2020)

    Article  CAS  Google Scholar 

  12. T.H. Dolla, D.G. Billing, C. Sheppard, A. Prinsloo, E. Carleschi, B.P. Doyle et al., Mn substituted MnxZn1–xCo2O4 oxides synthesized by co-precipitation; effect of doping on the structural, electronic and magnetic properties. RSC Adv. 8, 39837–39848 (2018)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. P. Saxena, P. Choudhary, A. Yadav, V.N. Rai, M. Varshney, A. Mishra, Effect of transition metal substitution on structural and dielectric properties of Mg0.5Zn0.5–xCrxCo2O4 (0.0 ≤ x ≤ 0.5) cobaltite. J. Mater. Sci. 30, 7292 (2019)

    CAS  Google Scholar 

  14. R.A. Sutar, L. Kumari, M.V. Murugendrappa, Temperature-dependent transport properties of micro and nano-sized zinc cobalt oxide (ZnCo2O4) and zinc manganese oxide (ZnMn2O4) particles synthesized by a hydrothermal route. Ceram. Int. 46, 22492–22503 (2020)

    Article  CAS  Google Scholar 

  15. D. Yin, H. Yang, S. Wang, Z. Yang, Q. Liu, X. Zhang et al., Ce-doped ZnCo2O4 nanospheres: Synthesis, double enzyme-like performances, catalytic mechanism and fast colorimetric determination for glutathione. Colloids Surf. A Physicochem. Eng. Asp 607, 125466 (2020)

    Article  CAS  Google Scholar 

  16. A. Anwar, S. Zulfiqar, M.A. Yousuf, S.A. Ragab, M.A. Khan, I. Shakir et al., Impact of rare earth Dy+3 cations on the various parameters of nanocrystalline nickel spinel ferrite. J. Mater. Res. Technol. 9, 5313–5325 (2020)

    Article  CAS  Google Scholar 

  17. M. Shafique, M.A.R. Khan, H. Mahmood, T. Iqbal, M. Musarrat, Antibacterial and photocatalytic properties of copper-cobaltite (CuCo2O4) nanostructures synthesized via facile plasma-assisted electrochemical process. Mater. Sci. Eng. B 286, 116063 (2022)

    Article  CAS  Google Scholar 

  18. P. Scherrer, Bestimmung Der Grösse Und Der Inneren Struktur Von Kolloidteilchen Mittels Röntgenstrahlen. Nachr. Ges Wiss Göttingen. 26, 98 (1918)

    Google Scholar 

  19. J.I. Langford, A.J.C. Wilson, Seherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Cryst. 11, 102 (1978)

    Article  ADS  CAS  Google Scholar 

  20. V. Uvarov, I. Popov, Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials. Mater. Charact. 85, 111–123 (2013)

    Article  CAS  Google Scholar 

  21. I. Ahmad, S.M. Shah, M.N. Zafar, M.N. Ashiq, W. Tang, U. Jabeen, Synthesis, characterization and charge transport properties of Pr–Ni co-doped SrFe2O4 spinel for high frequency devices applications. Ceram. Int. 47, 3760–3771 (2021)

    Article  CAS  Google Scholar 

  22. A. Sathiya Priya, D. Geetha, K. Karthik, M. Rajamoorthy, Investigations on the enhanced photocatalytic activity of (Ag, La) substituted nickel cobaltite spinels. Solid State Sci. 98, 105992 (2019)

    Article  CAS  Google Scholar 

  23. B. Mandal, M.R. Das, P. Mitra, Microstructural interpretation of charge transport dynamics of chemically derived ZnCo2O4 under mechanical milling. J. Alloys Compd. 784, 877–886 (2019)

    Article  CAS  Google Scholar 

  24. V. Adimule, B.C. Yallur, S. Batakurki, C. Bathula, W. Nabgan, F.A. Alharthi et al., Promoting the photocatalytic reduction of CO2 and dye degradation via multi metallic smx modified CuCo2O4 reverse spinel hybrid catalyst. Ceram. Int. 49, 1742–1755 (2023)

    Article  CAS  Google Scholar 

  25. A. Sinha, A. Dutta, Structural, optical, and electrical transport properties of some rare-earth-doped nickel ferrites: A study on effect of ionic radii of dopants. J. Phys. Chem. Solids 145, 109534 (2020)

    Article  CAS  Google Scholar 

  26. R. Bagtache, S. Zahra, A. Abdi, M. Trari, Characterization of CuCo2O4 Prepared by Nitrate Route: Application to Ni2 + reduction under visible light. J. Photochem. Photobiol A Chem. 400, 112728 (2020)

    Article  CAS  Google Scholar 

  27. H. Aono, H. Hirazawa, T. Naohara, T. Maehara, Surface study of fine MgFe2O4 ferrite powder prepared by chemical methods. Appl. Surf. Sci. 254, 2319–2324 (2008)

    Article  ADS  CAS  Google Scholar 

  28. C.R.K. Mohan, P.K. Bajpai, Effect of sintering optimization on the electrical properties of bulk BaxSr1–xTiO3 ceramics. Phys. B Condens Matter. 403, 2173–2188 (2008)

    Article  ADS  CAS  Google Scholar 

  29. S. Nasir, A.S. Saleemi, M. Fatima-Tuz-Zahra, Anis-Ur-Rehman, Enhancement in dielectric and magnetic properties of Ni-Zn ferrites prepared by sol-gel method. J. Alloys Compd. 572, 170–174 (2013)

    Article  CAS  Google Scholar 

  30. K. Hussain, N. Amin, M.I. Arshad, Evaluation of structural, optical, dielectric, electrical, and magnetic properties of Ce3+ doped Cu0.5Cd0.25Co0.25Fe2–xO4 spinel nano-ferrites. Ceram. Int. 47, 3401–3410 (2021)

    Article  CAS  Google Scholar 

  31. N. Rezlescu, E. Rezlescw, Dielectric properties of ferrites. Phys. Status Solidi 23, 575 (1974)

    Article  ADS  CAS  Google Scholar 

  32. G. Gan, Y. Yin, Z. Zheng, Y. Wang, X. Zhang, G. Zou et al., Two phase Mg0.7Cd0.3Fe2O4–BaTiO3 composite ceramics with excellent magneto-dielectric properties for antennas in GHz band. Ceram. Int. 49, 32923–32928 (2023)

    Article  CAS  Google Scholar 

  33. L.S. Lobo, A. Ruban Kumar, Structural and electrical properties of ZnCo2O4 spinel synthesized by sol-gel combustion method. J. Non Cryst. Solids. 505, 301–309 (2019)

    Article  ADS  CAS  Google Scholar 

  34. G. Asghar, M. Anis-Ur-Rehman, Structural, dielectric and magnetic properties of Cr-Zn doped strontium hexa-ferrites for high frequency applications. J. Alloys Compd. 526, 85–90 (2012)

    Article  CAS  Google Scholar 

  35. R.C. Kambale, P.A. Shaikh, C.H. Bhosale, K.Y. Rajpure, Y.D. Kolekar, The effect of Mn substitution on the magnetic and dielectric properties of cobalt ferrite synthesized by an autocombustion route. Smart Mater. Struct. 18, 115028 (2009)

    Article  ADS  Google Scholar 

  36. R. Punia, R.S. Kundu, M. Dult, S. Murugavel, N. Kishore, Temperature and frequency dependent conductivity of bismuth zinc vanadate semiconducting glassy system. J. Appl. Phys. 112, 083701 (2012)

    Article  ADS  Google Scholar 

  37. J. Shanker, J. Ananthaiah, N. Pavan Kumar, K. Venkataramana, M. Anand pandarinath, U.P. Ujwal et al., Giant dielectric behavior in NdCrO3 perovskite nanoparticles. IOP Conf. Ser. Mater. Sci. Eng. 1233, 012011 (2022)

    Article  Google Scholar 

  38. R.S. Devan, Y.D. Kolekar, B.K. Chougule, Magnetoelectric effect and electrical properties in BTO + Ni0.93Co0.02Cu0.05Fe2O4 particulate composites. J. Alloys Compd. 461, 678–683 (2008)

    Article  CAS  Google Scholar 

  39. L. Zhang, Electrode and grain-boundary effects on the conductivity of CaCu3Ti4O12. Appl. Phys. Lett. 87, 022907 (2005)

    Article  ADS  Google Scholar 

  40. H. Rahmouni, M. Smari, B. Cherif, E. Dhahri, K. Khirouni, Conduction mechanism, impedance spectroscopic investigation and dielectric behavior of La0.5Ca0.5–xAgxMnO3 manganites with compositions below the concentration limit of silver solubility in perovskites (0 ≤ x ≤ 0.2). Dalton Trans. 44, 10457–10466 (2015)

    Article  CAS  PubMed  Google Scholar 

  41. N. Kumari, V. Kumar, S.K. Singh, Structural, dielectric and magnetic investigations on Al3+ substituted Zn-ferrospinels. RSC Adv. 5, 37925–37934 (2015)

    Article  ADS  CAS  Google Scholar 

  42. P.R. Das, B. Pati, B.C. Sutar, R.N.P. Choudhury, Study of Structural and Electrical Properties of a New type of Complex Tungsten Bronze Electroceramics. J. Mod. Phys. 03, 870–880 (2012)

    Article  Google Scholar 

  43. L.S. Lobo, S. Kalainathan, A.R. Kumar, Investigation of electrical studies of spinel FeCo2O4 synthesized by sol-gel method. Superlattices Microstruct. 88, 116–126 (2015)

    Article  ADS  CAS  Google Scholar 

  44. T. Akhter, H.M. Khan, S. Honey, S.S. Hussain, M. Zahid, M.S. Javed et al., Optimization of structural, electrical, and magnetic properties of ytterbium substituted W-type hexaferrite for multi-layer chip inductors. Ceram. Int. 48, 33177–33184 (2022)

    Article  CAS  Google Scholar 

  45. M.M. Rahman, N. Hasan, M.A. Hoque, M.B. Hossen, M. Arifuzzaman, Structural, dielectric, and electrical transport properties of Al3+ substituted nanocrystalline Ni-Cu spinel ferrites prepared through the sol–gel route. Results Phys. 38, 105610 (2022)

    Article  Google Scholar 

  46. A. Tamilselvan, S. Balakumar, M. Sakar, C. Nayek, P. Murugavel, K. Saravana Kumar, Role of oxygen vacancy and Fe-O-Fe bond angle in compositional, magnetic, and dielectric relaxation on Eu-substituted BiFeO3 nanoparticles. Dalton Trans. 43, 5731–5738 (2014)

    Article  CAS  PubMed  Google Scholar 

  47. D. Zhi, T. Li, J. Li, H. Ren, F. Meng, A Review of three-dimensional graphene-based aerogels: synthesis, structure and application for microwave absorption. Compos. B Eng. 211, 108642 (2021)

    Article  CAS  Google Scholar 

  48. M. Belal Hossen, A.K.M. Akther Hossain, Complex impedance and electric modulus studies of magnetic ceramic Ni0.27Cu0.10Zn0.63Fe2O4. J. Adv. Ceram. 4, 217–225 (2015)

    Article  Google Scholar 

  49. T.V. Sagar, T.S. Rao, K.C.B. Naidu, AC-electrical conductivity, magnetic susceptibility, dielectric modulus and impedance studies of sol-gel processed nano-NiMgZn ferrites. Mater. Chem. Phys. 258, 123902 (2021)

    Article  CAS  Google Scholar 

  50. T. Roman, D. Ghercă, A.I. Borhan, M. Grigoraș, G. Stoian, N. Lupu et al., Nanostructured quaternary Ni1 – xCuxFe2–yCeyO4 complex system: Cerium content and copper substitution dependence of cation distribution and magnetic-electric properties in spinel ferrites. Ceram. Int. 47, 18177–18187 (2021)

    Article  CAS  Google Scholar 

  51. A.K. Sijo, Magnetic and structural properties of CoCrxFe2–xO4 spinels prepared by solution self combustion method. Ceram. Int. 43, 2288–2290 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author Ms.Yasmin J thankfully acknowledges the “Anna centenary research fellowship (ACRF), Anna University, Chennai, Tamil Nadu, Chennai-75 for providing the fellowship to carry out this research work.

Funding

The research leading to these results received funding from Anna centenary research fellowship (ACRF), Anna University, Chennai, Tamil Nadu] under Grant Agreement No (Ref.No.CFR/ACRF-2022/AR1).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [YJ], [GPJ] and [GD]. The first draft of the manuscript was written by [YJ] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to D. Geetha.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to corresponding author name was wrongly denoted.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasmin, Gracie, P.J. & Geetha, D. Effect of cerium substitution on structural, optical, electrical transport and magnetic properties of spinel cobaltite synthesized through citrate-nitrate method. J Mater Sci: Mater Electron 35, 293 (2024). https://doi.org/10.1007/s10854-024-12052-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12052-2

Navigation