Skip to main content
Log in

High electrochemical performance of Cu x Co3−x O4 nanostructured electrodes: the effect of spinel inversion and annealing temperature

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Cu x Co3 − x O4 thin films (with x = 0, 0.1, 0.3, and 0.5) were successfully deposited on glass and indium-doped tin oxide substrates by the sol-gel method. Despite the observed enhancement in crystallinity, a decrease in ion capacity was observed with the increasing of annealing temperature, which was attributed to the suppression of the diffusion of the electrolyte ions into the films. It was also deduced that Cu doping resulted in a significant increase in capacity with a maximum value of 2.92E-02 C/cm2 which was obtained for x = 0.3. The observed decrease in capacity after raising the x value from 0.3 to 0.5 was due to the formation of mixed spinel structure. The results also showed that the variation of optical absorption coefficient, optical band gap energy, electrical resistance, and doping density with x was consistent with the general characteristics of the formed mixed spinel structure when it exceeded x = 0.3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pendashteh A, Moosavifard SE, Rahmanifar MS, Wang Y, El-Kady MF, Kaner RB, Mousavi MF (2015) Highly ordered mesoporous CuCo2O4 nanowires, a promising solution for high-performance supercapacitors. Chem Mater 27:3919–3926

    Article  CAS  Google Scholar 

  2. Vigneshwaran P, Kandiban M, Senthil Kumar N, Venkatachalam V, Jayavel R, Vetha Potheher I (2016) A study on the synthesis and characterization of CoMn2O4 electrode material for supercapacitor applications. J Mater Sci : Mater Electron 27:4653–4658

    CAS  Google Scholar 

  3. Yu L, Guan B, Xiao W, Lou XW (2015) Formation of yolk-shelled Ni–co mixed oxide nanoprisms with enhanced electrochemical performance for hybrid supercapacitors and lithium ion batteries. Adv Energ Mater 5:1500981-n/a

    Article  Google Scholar 

  4. Wu HB, Pang H, Lou XW (2013) Facile synthesis of mesoporous Ni0.3Co2.7O4 hierarchical structures for high-performance supercapacitors. Energy Environ Sci 6:3619–3626

    Article  CAS  Google Scholar 

  5. Brousse T, Bélanger D, Long JW (2015) To be or not to be pseudocapacitive? J Electrochem Soc 162:A5185–A5189

    Article  CAS  Google Scholar 

  6. Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343:1210–1211

    Article  CAS  Google Scholar 

  7. Yu Z, Tetard L, Zhai L, Thomas J (2015) Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energ Environment Sci 8:702–730

    Article  CAS  Google Scholar 

  8. Wang B, Zhu T, Wu HB, Xu R, Chen JS, Lou XW (2012) Porous Co3O4 nanowires derived from long CO(CO3)0.5(OH).0.11H2O nanowires with improved supercapacitive properties. Nano 4:2145–2149

    CAS  Google Scholar 

  9. Zhang Y, Ma M, Yang J, Sun C, Su H, Huang W, Dong X (2014) Shape-controlled synthesis of NiCo2S4 and their charge storage characteristics in supercapacitors. Nano 6:9824–9830

    CAS  Google Scholar 

  10. Jadhav HS, Pawar SM, Jadhav AH, Thorat GM, Seo JG (2016) Hierarchical mesoporous 3D flower-like CuCo2O4/NF for high-performance electrochemical energy storage. Sci Rep 6:31120

    Article  CAS  Google Scholar 

  11. Wang L, Liu X, Wang X, Yang X, Lu L (2010) Preparation and electrochemical properties of mesoporous Co3O4 crater-like microspheres as supercapacitor electrode materials. Curr Appl Phys 10:1422–1426

    Article  Google Scholar 

  12. Reddy MV, Rajesh M, Adams S, Chowdari BVR (2016) Effect of initial reactants and reaction temperature on molten salt synthesis of CuCo2O4 and its sustainable energy storage properties. ACS Sustain Chem Eng 4:3076–3086

    Article  CAS  Google Scholar 

  13. Ambare RC, Bharadwaj SR, Lokhande BJ (2014) Electrochemical characterization of Mn: Co3O4 thin films prepared by spray pyrolysis via aqueous route. Curr Appl Phys 14:1582–1590

    Article  Google Scholar 

  14. Liu S, Zhang S, Xing Y, Wang S, Lin R, Wei X, He L (2014) Facile synthesis of hierarchical mesoporous CuxCo3-xO4 nanosheets array on conductive substrates with high-rate performance for Li-ion batteries. Electrochim Acta 150:75–82

    Article  CAS  Google Scholar 

  15. Cheng J, Yan H, Lu Y, Qiu K, Hou X, Xu J, Han L, Liu X, Kim J-K, Luo Y (2015) Mesoporous CuCo2O4 nanograsses as multi-functional electrodes for supercapacitors and electro-catalysts. J Mater Chem A 3:9769–9776

    Article  CAS  Google Scholar 

  16. Alizadeh-Gheshlaghi E, Shaabani B, Khodayari A, Azizian-Kalandaragh Y, Rahimi R (2012) Investigation of the catalytic activity of nano-sized CuO, Co3O4 and CuCo2O4 powders on thermal decomposition of ammonium perchlorate. Powder Technol 217:330–339

    Article  CAS  Google Scholar 

  17. La Rosa-Toro A, Berenguer R, Quijada C, Montilla F, Morallón E, Vázquez JL (2006) Preparation and characterization of copper-doped cobalt oxide electrodes. J Phys Chem B 110:24021–24029

    Article  CAS  Google Scholar 

  18. De Koninck M, Poirier S-C, Marsan B (2006) CuxCo3−xO4 used as bifunctional electrocatalyst physicochemical properties and electrochemical characterization for the oxygen evolution reaction. J Electrochem Soc 153:A2103–A2110

    Article  CAS  Google Scholar 

  19. Marsan B, Fradette N, Beaudoin G (1992) Physicochemical and electrochemical properties of CuCo2O4 electrodes prepared by thermal decomposition for oxygen evolution. J Electrochem Sci 139:1889–1896

    Article  Google Scholar 

  20. Chi B, Lin H, Li J (2008) Cations distribution of CuxCo3−xO4 and its electrocatalytic activities for oxygen evolution reaction. Int J Hydrogen Energ 33:4763–4768

    Article  CAS  Google Scholar 

  21. Zhang K, Zeng W, Zhang G, Hou S, Wang F, Wang T, Duan H (2015) Hierarchical CuCo2O4 nanowire@NiCo2O4 nanosheet core/shell arrays for high-performance supercapacitors. RSC Adv 5:69636–69641

    Article  CAS  Google Scholar 

  22. Chen H, Chen X, Zeng Y, Chen S, Wang J (2015) Grass-like CuCo2O4 nanowire arrays supported on nickel foam with high capacitances and desirable cycling performance. RSC Adv 5:70494–70497

    Article  CAS  Google Scholar 

  23. Xia X-h, Tu J-p, Zhang Y-q, Mai Y-j, Wang X-l, Gu C-d, Zhao X-b (2012) Freestanding Co3O4 nanowire array for high performance supercapacitors. RSC Adv 2:1835–1841

    Article  CAS  Google Scholar 

  24. Gu D, Li W, Wang F, Bongard H, Spliethoff B, Schmidt W, Weidenthaler C, Xia Y, Zhao D, Schüth F (2015) Controllable synthesis of mesoporous peapod-like Co3O4@carbon nanotube arrays for high-performance lithium-ion batteries. Angew Chem Int Edit 54:7060–7064

    Article  CAS  Google Scholar 

  25. Liu W, Jiang D, Xia J, Qian J, Wang K, Li H (2014) Preparation of hierarchical mesoporous Co3O4 bundle using [Bmim]TA as a multi-role starting material and its supercapacitor application. Monatsh Chem 145:19–22

    Article  CAS  Google Scholar 

  26. Deori K, Ujjain SK, Sharma RK, Deka S (2013) Morphology controlled synthesis of nanoporous Co3O4 nanostructures and their charge storage characteristics in supercapacitors. ACS Appl Mater Interface 5:10665–10672

    Article  CAS  Google Scholar 

  27. Gao Y, Chen S, Cao D, Wang G, Yin J (2010) Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam. J Power Sources 195:1757–1760

    Article  CAS  Google Scholar 

  28. Bahlawane N, Fischer Rivera E, Kohse-Höinghaus K, Brechling A, Kleineberg U (2004) Characterization and tests of planar Co3O4 model catalysts prepared by chemical vapor deposition. Appl Catal B-Environ 53:245–255

    Article  CAS  Google Scholar 

  29. Abu-Zied BM, Soliman SA, Abdellah SE (2015) Enhanced direct N2O decomposition over CuxCo1−xCo2O4 (0.0 ≤ x ≤ 1.0) spinel-oxide catalysts. J Ind Eng Chem 21:814–821

    Article  CAS  Google Scholar 

  30. Guan H, Shao C, Wen S, Chen B, Gong J, Yang X (2003) A novel method for preparing Co3O4 nanofibers by using electrospun PVA/cobalt acetate composite fibers as precursor. Mater Chem Phys 82:1002–1006

    Article  CAS  Google Scholar 

  31. Anandha Babu G, Ravi G, Hayakawa Y (2014) Microwave synthesis and effect of CTAB on ferromagnetic properties of NiO, Co3O4 and NiCo2O4 nanostructures. Appl Phys A Mater Sci Process 119:219–232

    Article  Google Scholar 

  32. Wang R, Xu C, Sun J, Liu Y, Gao L, Lin C (2013) Free-standing and binder-free lithium-ion electrodes based on robust layered assembly of graphene and Co3O4 nanosheets. Nano 5:6960–6967

    CAS  Google Scholar 

  33. Liotta LF, Wu H, Pantaleo G, Venezia AM (2013) Co3O4 nanocrystals and Co3O4-MOx binary oxides for CO, CH4 and VOC oxidation at low temperatures: a review. Catal Sci Tec 3:3085–3102

    Article  CAS  Google Scholar 

  34. Ai L, Jiang J (2010) Facile synthesis and characterization of polypyrrole/Co3O4 nanocomposites with adjustable intrinsic electroconductivity. J Mater Sci Mater Electron 21:410–415

    Article  CAS  Google Scholar 

  35. Naveen AN, Selladurai S (2016) Novel synthesis of highly porous three-dimensional nickel cobaltite for supercapacitor application. Ionics 22:1471–1483

    Article  CAS  Google Scholar 

  36. Luisetto I, Pepe F, Bemporad E (2008) Preparation and characterization of nano cobalt oxide. J Nanopart Res 10:59–67

    Article  CAS  Google Scholar 

  37. Chandradass J, Balasubramanian M, Kim KH (2010) Size effect on the magnetic property of CoAl2O4 nanopowders prepared by reverse micelle processing. J Alloy Compd 506:395–399

    Article  CAS  Google Scholar 

  38. Connell GAN, Lewis A (1973) Comments on the evidence for sharp and gradual optical absorption edges in amorphous germanium. Phys Status Solidi (b) 60:291–298

    Article  CAS  Google Scholar 

  39. Ashour A, Afifi HH, Mahmoud SA (1994) Effect of some spray pyrolysis parameters on electrical and optical properties of ZnS films. Thin Solid Films 248:253–256

    Article  CAS  Google Scholar 

  40. Balouria V, Samanta S, Singh A, Debnath AK, Mahajan A, Bedi RK, Aswal DK, Gupta SK (2013) Chemiresistive gas sensing properties of nanocrystalline Co3O4 thin films. Sensor Actuat B-Chem 176:38–45

    Article  CAS  Google Scholar 

  41. El-Nahass MM (1992) Optical properties of tin diselenide films. J Mater Sci 27:6597–6604

    Article  CAS  Google Scholar 

  42. Yamamoto H, Tanaka S, Hirao K (2003) Effects of substrate temperature on nanostructure and band structure of sputtered Co3O4 thin films. J Appl Phys 93:4158–4162

    Article  CAS  Google Scholar 

  43. Amri A, Duan X, Yin C-Y, Jiang Z-T, Rahman MM, Pryor T (2013) Solar absorptance of copper–cobalt oxide thin film coatings with nano-size, grain-like morphology: optimization and synchrotron radiation XPS studies. Appl Surf Sci 275:127–135

    Article  CAS  Google Scholar 

  44. Ambrosini A, Lambert TN, Bencomo M, Hall A, Vanevery K, Siegel N, Ho C (2011) Improved high temperature solar absorbers for use in concentrating solar power central receiver applications. Wash DC ASME ES2011-54241:587–594

    Google Scholar 

  45. Tavares AC, da Silva Pereira MI, Mendonça MH, Nunes MR, Costa FM, Sá CM (1998) XPS and voltammetric studies on Ni1−xCuxCo2O4 spinel oxide electrodes. J Electroanal Chem 449:91–100

    Article  CAS  Google Scholar 

  46. Liu S, Hui KS, Hui KN, Jadhav VV, Xia QX, Yun JM, Cho YR, Mane RS, Kim KH (2016) Facile synthesis of microsphere copper cobalt carbonate hydroxides electrode for asymmetric supercapacitor. Electrochim Acta 188:898–908

    Article  CAS  Google Scholar 

  47. Liu S, Hui KS, Hui KN (2016) Flower-like copper cobaltite nanosheets on graphite paper as high-performance supercapacitor electrodes and enzymeless glucose sensors. ACS Appl Mater Interface 8:3258–3267

    Article  CAS  Google Scholar 

  48. Liao Q, Li N, Jin S, Yang G, Wang C (2015) All-solid-state symmetric supercapacitor based on Co3O4 nanoparticles on vertically aligned graphene. ACS Nano 9:5310–5317

    Article  CAS  Google Scholar 

  49. Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 257:2717–2730

    Article  CAS  Google Scholar 

  50. Shanmugavani A, Selvan RK (2016) Improved electrochemical performances of CuCo2O4/CuO nanocomposites for asymmetric supercapacitors. Electrochim Acta 188:852–862

    Article  CAS  Google Scholar 

  51. Gautier JL, Trollund E, Ríos E, Nkeng P, Poillerat G (1997) Characterization of thin CuCo2O4 films prepared by chemical spray pyrolysis. Study of their electrochemical stability by ex situ spectroscopic analysis. J Electroanal Chem 428:47–56

    Article  CAS  Google Scholar 

  52. Vijayakumar S, Lee S-H, Ryu K-S (2015) Hierarchical CuCo2O4 nanobelts as a supercapacitor electrode with high areal and specific capacitance. Electrochim Acta 182:979–986

    Article  CAS  Google Scholar 

  53. Shelke PN, Khollam YB, Hawaldar RR, Gunjal SD, Udawant RR, Sarode MT, Takwale MG, Mohite KC (2013) Synthesis, characterization and optical properties of selective Co3O4 films 1-D interlinked nanowires prepared by spray pyrolysis technique. Fuel 112:542–549

    Article  CAS  Google Scholar 

  54. Li Y, Zhao J, Han J, He X (2005) Combustion synthesis and characterization of NiCuZn ferrite powders. Mater Res Bull 40:981–989

    Article  CAS  Google Scholar 

  55. Fradette N, Marsan B (1998) Surface studies of CuxCo3−xO4 electrodes for the electrocatalysis of oxygen evolution. J Electrochem Sci 145:2320–2327

    Article  CAS  Google Scholar 

  56. Tyczkowski J, Kapica R, Redzynia W, Kozanecki M, Chehimi MM, Sielski J, Kuberski SM (2013) Plasma deposition and characterization of copper-doped cobalt oxide nanocatalysts. Mater Sci 19:270–276

    Google Scholar 

  57. Angelov S, Tyuliev G, Marinova T (1987) XPS study of surface composition of polycrystalline CuxCo3−xO4 (0⩽x<1) obtained by thermal decomposition of nitrate mixtures. Appl Surf Sci 27:381–392

    Article  CAS  Google Scholar 

  58. Guan B, Guo D, Hu L, Zhang G, Fu T, Ren W, Li J, Li Q (2014) Facile synthesis of ZnCo2O4 nanowire cluster arrays on Ni foam for high-performance asymmetric supercapacitors. J Mater Chem A 2:16116–16123

    Article  CAS  Google Scholar 

  59. Naveen AN, Manimaran P, Selladurai S (2015) Cobalt oxide (Co3O4)/graphene nanosheets (GNS) composite prepared by novel route for supercapacitor application. J Mater Sci Mater Electron 26:8988–9000

    Article  CAS  Google Scholar 

  60. Krishnan SG, Reddy MV, Harilal M, Vidyadharan B, Misnon II, Rahim MHA, Ismail J, Jose R (2015) Characterization of MgCo2O4 as an electrode for high performance supercapacitors. Electrochim Acta 161:312–321

    Article  CAS  Google Scholar 

  61. Laban WA, Etgar L (2013) Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energy Environ Sci 6:3249–3253

    Article  CAS  Google Scholar 

  62. Kirchartz T, Gong W, Hawks SA, Agostinelli T, MacKenzie RCI, Yang Y, Nelson J (2012) Sensitivity of the Mott–Schottky analysis in organic solar cells. J Phys Chem Soc 116:7672–7680

    CAS  Google Scholar 

  63. Liu J, Yang H, Tan W, Zhou X, Lin Y (2010) Photovoltaic performance improvement of dye-sensitized solar cells based on tantalum-doped TiO2 thin films. Electrochim Acta 56:396–400

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the University of Guilan Research Council for the support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. E. Ghodsi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behzad, H., Ghodsi, F.E. & Karaağaç, H. High electrochemical performance of Cu x Co3−x O4 nanostructured electrodes: the effect of spinel inversion and annealing temperature. Ionics 23, 2429–2442 (2017). https://doi.org/10.1007/s11581-017-2081-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2081-2

Keywords

Navigation