Skip to main content
Log in

Pre-bonded hybrid carbon materials with stable structure as anode for potassium-ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper presents a novel approach for optimizing potassium-ion battery electrode materials. By employing a pre-bonding technique, we have effectively combined the strengths of hard carbon’s rapid potassium-ion adsorption and graphite’s extensive potassium storage. The resulting pre-bonded carbon (PBC) composite exhibits remarkable electrochemical performance with exceptional stability. Electrochemical characterizations, along with SEM, Raman, XRD, and macroscopic observations, provide insights into PBC’s advantages. PBC’s structural integrity, maintained even after extended cycling, highlights its capacity to protect the graphite structure from damage. This buffering effect is especially significant under high current conditions. Furthermore, the pre-bonding process enables PBC to store potassium effectively, ensuring a high energy density for the negative electrode material. In contrast, samples mixed without pre-bonding exhibit poor adhesion between hard carbon and graphite, leading to graphite breakage and reduced electrochemical performance. PBC’s simplicity of implementation and compatibility with existing production systems make it a valuable addition to potassium-ion battery development, particularly in large-scale energy storage applications. The findings underscore the significance of pre-bonding as a promising technique to optimize potassium-ion battery electrode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Y. Xu, M. Titirici, J. Chen, F. Cora, P.L. Cullen, J.S. Edge, K. Fan, L. Fan, J. Feng, T. Hosaka, J. Hu, W. Huang, T.I. Hyde, S. Imtiaz, F. Kang, T. Kennedy, E.J. Kim, S. Komaba, L. Lander, P.N. Le Pham, P. Liu, B. Lu, F. Meng, D. Mitlin, L. Monconduit, R.G. Palgrave, L. Qin, K.M. Ryan, G. Sankar, D.O. Scanlon, T. Shi, L. Stievano, H.R. Tinker, C. Wang, H. Wang, H. Wang, Y. Wu, D. Zhai, Q. Zhang, M. Zhou, J. Zou, Roadmap for potassium-ion batteries. J. Phys. Energy 5, 021502 (2023). https://doi.org/10.1088/2515-7655/acbf76

    Article  ADS  Google Scholar 

  2. Y. Liu, Y.-X. Lu, Y.-S. Xu, Q.-S. Meng, J.-C. Gao, Y.-G. Sun, Y.-S. Hu, B.-B. Chang, C.-T. Liu, A.-M. Cao, Pitch-derived soft carbon as stable anode material for potassium ion batteries. Adv. Mater. 32, 2000505 (2020). https://doi.org/10.1002/adma.202000505

    Article  CAS  Google Scholar 

  3. Y. An, H. Fei, G. Zeng, L. Ci, B. Xi, S. Xiong, J. Feng, Commercial expanded graphite as a low-cost, long-cycling life anode for potassium-ion batteries with conventional carbonate electrolyte. J. Power Sour. 378, 66–72 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.033

    Article  ADS  CAS  Google Scholar 

  4. T. Hosaka, K. Kubota, A.S. Hameed, S. Komaba, Research development on K-ion batteries. Chem. Rev. 120, 6358–6466 (2020). https://doi.org/10.1021/acs.chemrev.9b00463

    Article  CAS  PubMed  Google Scholar 

  5. S. Liu, L. Kang, J. Henzie, J. Zhang, J. Ha, M.A. Amin, M.S.A. Hossain, S.C. Jun, Y. Yamauchi, Recent advances and perspectives of battery-type anode materials for potassium ion storage. ACS Nano 15, 18931–18973 (2021). https://doi.org/10.1021/acsnano.1c08428

    Article  CAS  PubMed  Google Scholar 

  6. F. Yang, H. Chen, J. Guo, P. Zheng, Catalytic graphitization of anthracite-derived carbon as the anode for Li/K-ion batteries. J. Mater. Sci.: Mater. Electron. 33, 4862–4868 (2022). https://doi.org/10.1007/s10854-021-07675-8

    Article  ADS  CAS  Google Scholar 

  7. M. Liu, D. Jing, Y. Shi, Q. Zhuang, Superior potassium storage in natural O/N–doped hard carbon derived from maple leaves. J. Mater. Sci.: Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-01219-x

    Article  Google Scholar 

  8. C. Bommier, T.W. Surta, M. Dolgos, X. Ji, 46-New mechanistic insights on Na-ion storage in nongraphitizable carbon. Nano Lett. 15, 5888–5892 (2015). https://doi.org/10.1021/acs.nanolett.5b01969

    Article  ADS  CAS  PubMed  Google Scholar 

  9. V. Lakshmi, Y. Chen, A.A. Mikhaylov, A.G. Medvedev, I. Sultana, M.M. Rahman, O. Lev, P.V. Prikhodchenko, A.M. Glushenkov, Nanocrystalline SnS 2 coated onto reduced graphene oxide: demonstrating the feasibility of a non-graphitic anode with sulfide chemistry for potassium-ion batteries. Chem. Commun. 53, 8272–8275 (2017). https://doi.org/10.1039/C7CC03998K

    Article  CAS  Google Scholar 

  10. X. Chen, C. Liu, Y. Fang, X. Ai, F. Zhong, H. Yang, Y. Cao, Understanding of the sodium storage mechanism in hard carbon anodes. Carbon Energy. 4, 1133–1150 (2022). https://doi.org/10.1002/cey2.196

    Article  CAS  Google Scholar 

  11. D.A. Stevens, J.R. Dahn, The mechanisms of lithium and sodium insertion in carbon materials. J. Electrochem. Soc. 148, A803–A811 (2001). https://doi.org/10.1149/1.1379565

    Article  CAS  Google Scholar 

  12. Z. Jian, S. Hwang, Z. Li, A.S. Hernandez, X. Wang, Z. Xing, D. Su, X. Ji, Hard–soft composite carbon as a long-cycling and high‐rate anode for potassium‐ion batteries. Adv. Funct. Mater. 27, 1700324 (2017). https://doi.org/10.1002/adfm.201700324

    Article  CAS  Google Scholar 

  13. J.R. Dahn, W. Xing, Y. Gao, The falling cards model for the structure of microporous carbons. Carbon. 35, 825–830 (1997). https://doi.org/10.1016/S0008-6223(97)00037-7

    Article  CAS  Google Scholar 

  14. Z. Wu, J. Zou, Y. Zhang, X. Lin, D. Fry, L. Wang, J. Liu, Lignin-derived hard carbon anode for potassium-ion batteries: Interplay among lignin molecular weight, material structures, and storage mechanisms. Chem. Eng. J. (2022). https://doi.org/10.1016/j.cej.2021.131547

    Article  PubMed  PubMed Central  Google Scholar 

  15. S.Y. Luchkin, S.A. Lipovskikh, N.S. Katorova, A.A. Savina, A.M. Abakumov, K.J. Stevenson, Solid-electrolyte interphase nucleation and growth on carbonaceous negative electrodes for Li-ion batteries visualized with in situ atomic force microscopy. Sci. Rep. 10, 8550 (2020). https://doi.org/10.1038/s41598-020-65552-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. C. Ge, Z. Fan, J. Zhang, Y. Qiao, J. Wang, L. Ling, Novel hard carbon/graphite composites synthesized by a facile in situ anchoring method as high-performance anodes for lithium-ion batteries. RSC Adv. 8, 34682–34689 (2018). https://doi.org/10.1039/c8ra07170e

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. K. Chen, V. Goel, M.J. Namkoong, M. Wied, S. Müller, V. Wood, J. Sakamoto, K. Thornton, N.P. Dasgupta, Enabling 6 C fast charging of Li-Ion batteries with graphite/hard carbon hybrid anodes. Adv. Energy Mater. 11, 2003336 (2021). https://doi.org/10.1002/aenm.202003336

    Article  CAS  Google Scholar 

  18. K. Kubota, S. Shimadzu, N. Yabuuchi, S. Tominaka, S. Shiraishi, M. Abreu-Sepulveda, A. Manivannan, K. Gotoh, M. Fukunishi, M. Dahbi, S. Komaba, Structural analysis of sucrose-derived hard carbon and correlation with the electrochemical properties for lithium, sodium, and potassium insertion. Chem. Mater. 32, 2961–2977 (2020). https://doi.org/10.1021/acs.chemmater.9b05235

    Article  CAS  Google Scholar 

  19. F.G. Emmerich, Evolution with heat treatment of crystallinity in carbons. Carbon. 33, 1709–1715 (1995). https://doi.org/10.1016/0008-6223(95)00127-8

    Article  CAS  Google Scholar 

  20. E. Buiel, J.R. Dahn, Li-insertion in hard carbon anode materials for Li-ion batteries. Electrochim. Acta. 45, 121–130 (1999). https://doi.org/10.1016/S0013-4686(99)00198-X

    Article  CAS  Google Scholar 

  21. L.G. Cançado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. Magalhães-Paniago, M.A. Pimenta, General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl. Phys. Lett. 88, 163106 (2006). https://doi.org/10.1063/1.2196057

    Article  ADS  CAS  Google Scholar 

  22. D. Cheng, X. Zhou, H. Hu, Z. Li, J. Chen, L. Miao, X. Ye, H. Zhang, Electrochemical storage mechanism of sodium in carbon materials: a study from soft carbon to hard carbon. Carbon. 182, 758–769 (2021). https://doi.org/10.1016/j.carbon.2021.06.066

    Article  CAS  Google Scholar 

  23. M. Wilamowska, M. Graczyk-Zajac, R. Riedel, Composite materials based on polymer-derived SiCN ceramic and disordered hard carbons as anodes for lithium-ion batteries. J. Power Sour. 244, 80–86 (2013). https://doi.org/10.1016/j.jpowsour.2013.03.137

    Article  CAS  Google Scholar 

  24. T.D. Tran, J.H. Feikert, R.W. Pekala, K. Kinoshita, Rate effect on lithium-ion graphite electrode performance. J. Appl. Electrochem. 26, 1161–1167 (1996). https://doi.org/10.1007/BF00243741

    Article  CAS  Google Scholar 

  25. D. Jang, S. Suh, H. Yoon, J. Kim, H. Kim, J. Baek, H.-J. Kim, Enhancing rate capability of graphite anodes for lithium-ion batteries by pore-structuring. Appl. Surf. Sci. Adv. 6, 100168 (2021). https://doi.org/10.1016/j.apsadv.2021.100168

    Article  Google Scholar 

  26. Z. Ma, Y. Gao, C. Bao, X. Xia, H. Liu, Reasonable intrinsic microstructure of microcrystalline graphite for high-rate and long-life potassium-ion batteries. Electrochim. Acta 440, 141703 (2023). https://doi.org/10.1016/j.electacta.2022.141703

    Article  CAS  Google Scholar 

  27. X. Yi, X. Li, J. Zhong, S. Wang, Z. Wang, H. Guo, J. Wang, G. Yan, Unraveling the mechanism of different kinetics performance between ether and carbonate ester electrolytes in hard carbon electrode. Adv. Funct. Mater. 32, 2209523 (2022). https://doi.org/10.1002/adfm.202209523

    Article  CAS  Google Scholar 

  28. E. Woillez, M. Chandesris, Insight into LIB diffusion phenomena using analytical impedance models. J. Electrochem. Soc. 170, 070527 (2023). https://doi.org/10.1149/1945-7111/ace55b

    Article  ADS  Google Scholar 

  29. K. Guerin, A. Fevrier-Bouvier, S. Flandrois, B. Simon, P. Biensan, On the irreversible capacities of disordered carbons in lithium-ion rechargeable batteries. Electrochim. Acta. 45, 1607–1615 (2000). https://doi.org/10.1016/S0013-4686(99)00321-7

    Article  CAS  Google Scholar 

  30. M.Y. Gu, L. Fan, J. Zhou, A.M. Rao, B.A. Lu, Regulating solvent molecule coordination with KPF6 for superstable graphite potassium anodes. ACS Nano 15, 9167–9175 (2021). https://doi.org/10.1021/acsnano.1c02727

    Article  CAS  PubMed  Google Scholar 

  31. H. Li, W. Li, Improving cycle life and rate capability of artificial graphite anode for lithium-ion batteries by agglomeration. Mater. Lett. 318, 132227 (2022). https://doi.org/10.1016/j.matlet.2022.132227

    Article  CAS  Google Scholar 

  32. G. He, L.F. Nazar, Crystallite size control of prussian white analogues for nonaqueous potassium–ion batteries. ACS Energy Lett. 2, 1122–1127 (2017). https://doi.org/10.1021/acsenergylett.7b00179

    Article  CAS  Google Scholar 

Download references

Funding

This work was generously supported by the National Natural Science Foundation of China (Grant No. 11874124) and the Science and Technology Planning Project of Guangdong Province, China (Grant Nos. 2014B03032013, 2015B010114007, and 2016B010129002).

Author information

Authors and Affiliations

Authors

Contributions

RH: Investigation, conceptualization, methodology, writing—original draft, verification, resources, data management, and editing. WW: Writing—review & editing, and visualization. DX: Investigation. LC: Verification. ZF: Visualization and commenting. KW: Commenting and supervision. ZL: Comment and verification. CX: Comment and editing. HM: Funding acquisition.

Corresponding author

Correspondence to Miao He.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 695.5 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, R., Wang, W., Xiong, D. et al. Pre-bonded hybrid carbon materials with stable structure as anode for potassium-ion batteries. J Mater Sci: Mater Electron 35, 317 (2024). https://doi.org/10.1007/s10854-024-12045-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12045-1

Navigation