Skip to main content
Log in

Comparison of carbon coating and MCMB structures used in graphite anodes for potassium ion batteries

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

This study comprehensively investigates three types of graphite materials as potential anodes for potassium-ion batteries. Natural graphite, artificial carbon-coated graphite, and mesocarbon microbeads (MCMB) are examined for their structural characteristics and electrochemical performances. Structural analyses, including HRTEM, XRD, Raman spectroscopy, and laser particle size measurements, reveal distinct features in each graphite type. XRD spectra confirm that all graphites are composed of pure carbon, with high crystallinity and varying crystal sizes. Raman spectroscopy indicates differences in disorder levels, with artificial carbon-coated graphite exhibiting the highest disorder, attributed to its outer carbon coating. Ex-situ Raman and HRTEM techniques on the electrodes reveal their distinct electrochemical behaviors. MCMB stands out with superior stability and capacity retention during prolonged cycling, attributed to its unique spherical particle structure facilitating potassium-ion diffusion. The study suggests that MCMB holds promise for potassium-ion full batteries. In addition, artificial carbon-coated graphite, despite challenges in hindering potassium-ion diffusion, may find applications in commercial potassium-ion battery anodes with suitable coatings. The research contributes valuable insights into potassium-ion battery anode materials, offering a significant extension to the current understanding of graphite-based electrode performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yang Z, Zhang J, Kintner-Meyer MCW, Lu X, Choi D, Lemmon JP, Liu J (2011) Electrochemical energy storage for green grid. Chem Rev 111(5):3577–3613. https://doi.org/10.1021/cr100290v

    Article  CAS  PubMed  Google Scholar 

  2. Shen C, Cheng T, Liu C, Huang L, Cao M, Song G, Wang D, Lu B, Wang J, Qin C, Huang X, Peng P, Li X, Wu Y (2020) Bismuthene from sonoelectrochemistry as a superior anode for potassium-ion batteries. J Mater Chem A 8(1):453–460. https://doi.org/10.1039/C9TA11000C

    Article  CAS  Google Scholar 

  3. Li Y, Lu Y, Adelhelm P, Titirici M-M, Hu Y-S (2019) Intercalation chemistry of graphite: alkali metal ions and beyond. Chem Soc Rev 48(17):4655–4687. https://doi.org/10.1039/c9cs00162j

    Article  CAS  PubMed  Google Scholar 

  4. Komaba S, Hasegawa T, Dahbi M, Kubota K (2015) Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem Commun 60:172–175. https://doi.org/10.1016/j.elecom.2015.09.002

    Article  CAS  Google Scholar 

  5. Pramudita JC, Sehrawat D, Goonetilleke D, Sharma N (2017) An initial review of the status of electrode materials for potassium-ion batteries. Adv Energy Mater 7(24):1602911. https://doi.org/10.1002/aenm.201602911

    Article  CAS  Google Scholar 

  6. Zhang W, Huang R, Yan X, Tian C, Xiao Y, Lin Z, Dai L, Guo Z, Chai L (2023) Carbon electrode materials for advanced potassium-ion storage. Angew Chem Int Ed 62(43):e202308891. https://doi.org/10.1002/anie.202308891

    Article  CAS  Google Scholar 

  7. Li L, Liu L, Hu Z, Lu Y, Liu Q, Jin S, Zhang Q, Zhao S, Chou S-L (2020) Understanding high-rate K+-solvent co-intercalation in natural graphite for potassium-ion batteries. Angew Chem-Int Ed 59(31):12917–12924. https://doi.org/10.1002/anie.202001966

    Article  CAS  Google Scholar 

  8. Gallego NC, Arregui-Mena JD, Contescu CI (2021) Probing basal planes and edge sites in polygranular nuclear graphite by gas adsorption: estimation of active surface area. Carbon 179:633–645. https://doi.org/10.1016/j.carbon.2021.04.044

    Article  CAS  Google Scholar 

  9. Jian Z, Luo W, Ji X (2015) Carbon electrodes for K-ion batteries. J Am Chem Soc 137(36):11566–11569. https://doi.org/10.1021/jacs.5b06809

    Article  CAS  PubMed  Google Scholar 

  10. Igarashi D, Kubota K, Hosaka T, Tatara R, Inose T, Ito Y, Inoue H, Takeuchi M, Komaba S (2021) Effect of crystallinity of synthetic graphite on electrochemical potassium intercalation into graphite. Electrochemistry 89(5):433–438. https://doi.org/10.5796/electrochemistry.21-00062

    Article  CAS  Google Scholar 

  11. Tossici R, Berrettoni M, Rosolen M, Marassi R, Scrosati B (1997) Electrochemistry of KC 8 in lithium-containing electrolytes and its use in lithium-ion cells. J Electrochem Soc 144(1):186. https://doi.org/10.1149/1.1837383

    Article  CAS  Google Scholar 

  12. Nightingale ER (1959) Phenomenological theory of ion solvation. effective radii of hydrated ions. J Phys Chem. https://doi.org/10.1021/j150579a011

    Article  Google Scholar 

  13. Wood M, Li J, Du Z, Daniel C, Dunlop AR, Polzin BJ, Jansen AN, Krumdick GK, Wood DL (2021) Impact of secondary particle size and two-layer architectures on the high-rate performance of thick electrodes in lithium-ion battery pouch cells. J Power Sources 515:230429. https://doi.org/10.1016/j.jpowsour.2021.230429

    Article  CAS  Google Scholar 

  14. Chen K, Goel V, Namkoong MJ, Wied M, Müller S, Wood V, Sakamoto J, Thornton K, Dasgupta NP (2021) Enabling 6C fast charging of li-ion batteries with graphite/hard carbon hybrid anodes. Adv Energy Mater 11(5):2003336. https://doi.org/10.1002/aenm.202003336

    Article  CAS  Google Scholar 

  15. Liu J, Yin T, Tian B, Zhang B, Qian C, Wang Z, Zhang L, Liang P, Chen Z, Yan J, Fan X, Lin J, Chen X, Huang Y, Loh KP, Shen ZX (2019) Unraveling the potassium storage mechanism in graphite foam. Adv Energy Mater. https://doi.org/10.1002/aenm.201900579

    Article  Google Scholar 

  16. Dong S-L, Yang J-X, Chang S-K, Shi K, Liu Y, Zou J-L, Li J (2023) An innovative and efficient method for the preparation of mesocarbon microbeads and their use in the electrodes of lithium ion batteries and electric double layer capacitors. Xinxing Tan CailiaoNew Carbon Mater 38(1):173–189. https://doi.org/10.1016/S1872-5805(22)60606-1

    Article  CAS  Google Scholar 

  17. Wang D, Li L, Zhang Z, Liu J, Guo X, Mao C, Peng H, Li Z, Li G (2021) Mechanistic insights into the intercalation and interfacial chemistry of mesocarbon microbeads anode for potassium ion batteries. Small 17(44):2103557. https://doi.org/10.1002/smll.202103557

    Article  CAS  Google Scholar 

  18. Han J, Lee K, Choi MS, Park HS, Kim W, Roh KC (2019) Chlorella-derived activated carbon with hierarchical pore structure for energy storage materials and adsorbents. Carbon Lett 29(2):167–175. https://doi.org/10.1007/s42823-019-00018-y

    Article  Google Scholar 

  19. Hui TS, Zaini MAA (2015) Potassium hydroxide activation of activated carbon: a commentary. Carbon Lett 16(4):275–280. https://doi.org/10.5714/CL.2015.16.4.275

    Article  Google Scholar 

  20. Um J, Yoon SU, Kim H, Youn BS, Jin H-J, Lim H-K, Yun YS (2022) High-performance solid-solution potassium-ion intercalation mechanism of multilayered turbostratic graphene nanosheets. J Energy Chem 67:814–823. https://doi.org/10.1016/j.jechem.2021.11.027

    Article  CAS  Google Scholar 

  21. Ji B, Zhang F, Wu N, Tang Y (2017) A dual-carbon battery based on potassium-ion electrolyte. Adv Energy Mater. https://doi.org/10.1002/aenm.201700920

    Article  Google Scholar 

  22. Xu D, Chen C, Xie J, Zhang B, Miao L, Cai J, Huang Y, Zhang L (2016) A hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries. Adv Energy Mater 6(6):1501929. https://doi.org/10.1002/aenm.201501929

    Article  CAS  Google Scholar 

  23. Peled E, Menkin S (2017) Review—SEI: past, present and future. J Electrochem Soc 164(7):A1703. https://doi.org/10.1149/2.1441707jes

    Article  CAS  Google Scholar 

  24. Qian Y, Li Y, Yi Z, Zhou J, Pan Z, Tian J, Wang Y, Sun S, Lin N, Qian Y (2021) Revealing the double-edged behaviors of heteroatom sulfur in carbonaceous materials for balancing K-storage capacity and stability. Adv Funct Mater 31(8):2006875. https://doi.org/10.1002/adfm.202006875

    Article  CAS  Google Scholar 

  25. Liu Y, Zhou S, Han H, Li H, Nie J, Zhou Z, Chen L, Huang X (2013) Molten salt electrolyte based on alkali Bis(Fluorosulfonyl)Imides for lithium batteries. Electrochim Acta 105:524–529. https://doi.org/10.1016/j.electacta.2013.05.044

    Article  CAS  Google Scholar 

  26. Wang T, Wang Y, Cheng G, Ma C, Liu X, Wang J, Qiao W, Ling L (2020) Catalytic graphitization of anthracite as an anode for lithium-ion batteries. Energy Fuels 34(7):8911–8918. https://doi.org/10.1021/acs.energyfuels.0c00995

    Article  CAS  Google Scholar 

  27. Bragg WH, Bragg WL (1913) The reflection of X-Rays by crystals. Proc R Soc Lond Ser Contain Pap Math Phys Charact 88(605):428–438. https://doi.org/10.1098/rspa.1913.0040

    Article  CAS  Google Scholar 

  28. Scherrer P (1912) Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. In: Zsigmondy R (ed) Kolloidchemie Ein Lehrbuch. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 387–409

    Chapter  Google Scholar 

  29. Zhu Z, Cheng F, Chen J (2013) Investigation of effects of carbon coating on the electrochemical performance of Li4Ti5O12/C nanocomposites. J Mater Chem A 1(33):9484–9490. https://doi.org/10.1039/C3TA00114H

    Article  CAS  Google Scholar 

  30. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61(20):14095–14107. https://doi.org/10.1103/PhysRevB.61.14095

    Article  CAS  Google Scholar 

  31. Feng Y, Chen S, Shen D, Zhou J, Lu B (2021) Cross-linked hollow graphitic carbon as low-cost and high-performance anode for potassium ion batteries. Energy Environ Mater 4(3):451–457. https://doi.org/10.1002/eem2.12126

    Article  CAS  Google Scholar 

  32. Share K, Cohn AP, Carter R, Rogers B, Pint CL (2016) Role of nitrogen-doped graphene for improved high-capacity potassium ion battery anodes. ACS Nano 10(10):9738–9744. https://doi.org/10.1021/acsnano.6b05998

    Article  CAS  PubMed  Google Scholar 

  33. Pidaparthy S, Rodrigues M-TF, Zuo J-M, Abraham DP (2021) Increased disorder at graphite particle edges revealed by multi-length scale characterization of anodes from fast-charged lithium-ion cells. J Electrochem Soc 168(10):100509. https://doi.org/10.1149/1945-7111/ac2a7f

    Article  CAS  Google Scholar 

  34. Wang L, Yang J, Li J, Chen T, Chen S, Wu Z, Qiu J, Wang B, Gao P, Niu X, Li H (2019) Graphite as a potassium ion battery anode in carbonate-based electrolyte and ether-based electrolyte. J Power Sources 409:24–30. https://doi.org/10.1016/j.jpowsour.2018.10.092

    Article  CAS  Google Scholar 

  35. Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7(5):1597. https://doi.org/10.1039/c3ee44164d

    Article  CAS  Google Scholar 

  36. Zhao L-F, Hu Z, Lai W-H, Tao Y, Peng J, Miao Z-C, Wang Y-X, Chou S-L, Liu H-K, Dou S-X (2021) Hard Carbon Anodes: Fundamental Understanding and Commercial Perspectives for Na-Ion Batteries beyond Li-Ion and K-Ion Counterparts. Adv Energy Mater 11(1):2002704. https://doi.org/10.1002/aenm.202002704

    Article  CAS  Google Scholar 

  37. Zhao J, Zou X, Zhu Y, Xu Y, Wang C (2016) Electrochemical intercalation of potassium into graphite. Adv Funct Mater 26(44):8103–8110. https://doi.org/10.1002/adfm.201602248

    Article  CAS  Google Scholar 

  38. Woillez E, Chandesris M (2023) Insight into LIB diffusion phenomena using analytical impedance models. J Electrochem Soc 170(7):070527. https://doi.org/10.1149/1945-7111/ace55b

    Article  Google Scholar 

  39. Zaghib K, Nadeau G, Kinoshita K (2004) Effects of graphite particle size on irreversible capacity loss for li-ion batteries. J Electrochem Soc 147(6):2110

    Article  Google Scholar 

  40. Zhang SS, Ma L, Allen JL, Read JA (2021) Stabilizing capacity retention of li-ion battery in fast-charge by reducing particle size of graphite. J Electrochem Soc 168(4):040519. https://doi.org/10.1149/1945-7111/abf40c

    Article  CAS  Google Scholar 

  41. Jian Z, Xing Z, Bommier C, Li Z, Ji X (2016) Hard carbon microspheres: potassium-ion anode versus sodium-ion anode. Adv Energy Mater. https://doi.org/10.1002/aenm.201501874

    Article  Google Scholar 

  42. Li W, Zhang R, Chen Z, Fan B, Xiao K, Liu H, Gao P, Wu J, Tu C, Liu J (2021) Microstructure-dependent K + storage in porous hard carbon. Small 17(21):2100397. https://doi.org/10.1002/smll.202100397

    Article  CAS  Google Scholar 

  43. Chen X, Tian J, Li P, Fang Y, Fang Y, Liang X, Feng J, Dong J, Ai X, Yang H, Cao Y (2022) An overall understanding of sodium storage behaviors in hard carbons by an “adsorption-intercalation/filling” hybrid mechanism. Adv Energy Mater 12(24):2200886. https://doi.org/10.1002/aenm.202200886

    Article  CAS  Google Scholar 

  44. Li Q, Cao Z, Wahyudi W, Liu G, Park G-T, Cavallo L, Anthopoulos TD, Wang L, Sun Y-K, Alshareef HN, Ming J (2021) Unraveling the new role of an ethylene carbonate solvation shell in rechargeable metal ion batteries. ACS Energy Lett 6(1):69–78. https://doi.org/10.1021/acsenergylett.0c02140

    Article  CAS  Google Scholar 

  45. Jang D, Suh S, Yoon H, Kim J, Kim H, Baek J, Kim H-J (2021) Enhancing rate capability of graphite anodes for lithium-ion batteries by pore-structuring. Appl Surf Sci Adv 6:100168. https://doi.org/10.1016/j.apsadv.2021.100168

    Article  Google Scholar 

  46. Wu Z, Zou J, Zhang Y, Lin X, Fry D, Wang L, Liu J (2022) Lignin-derived hard carbon anode for potassium-ion batteries: interplay among lignin molecular weight, material structures, and storage mechanisms. Chem Eng J 427:131547. https://doi.org/10.1016/j.cej.2021.131547

    Article  CAS  Google Scholar 

  47. Gu MY, Fan L, Zhou J, Rao AM, Lu BA (2021) Regulating solvent molecule coordination with KPF 6 for superstable graphite potassium anodes. ACS Nano 15(5):9167–9175. https://doi.org/10.1021/acsnano.1c02727

    Article  CAS  PubMed  Google Scholar 

  48. He G, Nazar LF (2017) Crystallite size control of prussian white analogues for nonaqueous potassium-ion batteries. ACS Energy Lett 2(5):1122–1127. https://doi.org/10.1021/acsenergylett.7b00179

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miao He.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 458 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, R., Xu, C., Feng, Z. et al. Comparison of carbon coating and MCMB structures used in graphite anodes for potassium ion batteries. Carbon Lett. (2024). https://doi.org/10.1007/s42823-024-00720-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42823-024-00720-6

Keywords

Navigation