Skip to main content
Log in

Microstructure evolution and growth kinetics of intermetallic compound in SAC305/Ag and SAC305/Cu solder joints during solid-state aging

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Correction to this article was published on 29 March 2024

This article has been updated

Abstract

Microstructure evolution and growth kinetics of intermetallic compound (IMC) in Sn-3Ag-0.5Cu (SAC305) /Ag and SAC305/Cu solder joints were investigated during isothermal aging at temperatures of 140, 160, and 180 °C for up to 528 h. Top-view and cross-sectional images were analyzed to elucidate the transformation processes of Cu6Sn5 and Ag3Sn grains on Cu and Ag substrates, respectively. In the top-view images, the Cu6Sn5 grains on the Cu substrate, initially exhibiting a scallop-type morphology after reflow, transformed into hexagonal-type grains during isothermal aging. In contrast, the Ag3Sn grains formed on Ag substrate, characterized by a prism-type morphology after reflow, underwent a process of transformation from scallop-type to hexagonal-type grains. The cross-sectional images revealed the formation of a planar-type IMC layer on both the Ag and Cu substrates. In the SAC305/Cu joint, after the aging time, a double-layer structure was seen in the way of bottom Cu3Sn layer and top Cu6Sn5 layer outside with many Ag3Sn tiny particles. However, in the condition of SAC305/Ag joint, only a few Cu6Sn5 particles were observed around the surface of the Ag3Sn IMC with a single layer. Kinetic analyses showed that the control mechanism for IMC growth on both substrates was volume diffusion and the apparent activation energies for the IMC growth were calculated as 89.641 kJ/mol for the SAC305/Ag joint and 97.082 kJ/mol for the SAC305/Cu joint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

Change history

References

  1. P.T. Vianco, A review of interface microstructures in electronic packaging applications: soldering technology. Jom 71, 158–177 (2018). https://doi.org/10.1007/s11837-018-3219-z

    Article  CAS  Google Scholar 

  2. J.-W. Lee, H. Choi, U.-K. Hwang, J.-C. Kang, Y.J. Kang, K.I. Kim, J.-H. Kim, Toxic effects of lead exposure on bioaccumulation, oxidative stress, neurotoxicity, and immune responses in fish: a review. Environ. Toxicol. Phar. 68, 101–108 (2019). https://doi.org/10.1016/j.etap.2019.03.010

    Article  CAS  Google Scholar 

  3. M. Bharath Krupa Teja, A. Sharma, S. Das, K. Das, A review on nanodispersed lead-free solders in electronics: synthesis, microstructure and intermetallic growth characteristics. J. Mater. Sci. Mater. Electron. 57, 8597–8633 (2022). https://doi.org/10.1007/s10853-022-07187-8

    Article  CAS  Google Scholar 

  4. M. Arunasalam, Z.B. Leman, B.T.H.T.B. Baharudin, S.B. Sulaiman, C.S. Anthony Das, Challenges in minimizing copper dissolution for lead free wave soldering in surface mount technology going towards green manufacturing. Int. J. Pr Eng. Man-GT 9, 645–660 (2021). https://doi.org/10.1007/s40684-020-00298-0

    Article  Google Scholar 

  5. J. Wang, S. Xue, P. Zhang, P. Zhai, Y. Tao, The reliability of lead-free solder joint subjected to special environment: a review. J. Mater. Sci. Mater. Electron. 30, 9065–9086 (2019). https://doi.org/10.1007/s10854-019-01333-w

    Article  CAS  Google Scholar 

  6. Y. Huo, J. Wu, C.C. Lee, Solid solution softening and enhanced ductility in concentrated FCC silver solid solution alloys. Mater. Sci. Eng. A 729, 208–218 (2018). https://doi.org/10.1016/j.msea.2018.05.057

    Article  CAS  Google Scholar 

  7. X. Long, Z. Li, X. Lu, H. Guo, C. Chang, Q. Zhang, A. Zehri, W. Ke, Y. Yao, L. Ye, J. Liu, Mechanical behaviour of sintered silver nanoparticles reinforced by SiC microparticles. Mater. Sci. Eng. A 744, 406–414 (2019). https://doi.org/10.1016/j.msea.2018.12.015

    Article  CAS  Google Scholar 

  8. H. Shao, A. Wu, Y. Bao, Y. Zhao, G. Zou, L. Liu, Microstructure evolution and mechanical properties of Cu/Sn/Ag TLP-bonded joint during thermal aging. Mater. Charact. 144, 469–478 (2018). https://doi.org/10.1016/j.matchar.2018.07.041

    Article  CAS  Google Scholar 

  9. C.-Y. Liu, P.-C. Kuo, C.-M. Chen, J.-Y. Dai, Y.-W. Yen, A.S. Pasana, Effect of multiple reflowing processes on interfacial reactions and mechanical properties between Sn-9.0 wt.%Zn, Sn-3.0 wt.%Ag-0.5 wt.%Cu solders and Ag substrate. J. Electron. Mater. 49, 257–267 (2019). https://doi.org/10.1007/s11664-019-07752-z

    Article  CAS  Google Scholar 

  10. J.F. Li, P.A. Agyakwa, C.M. Johnson, Kinetics of Ag3Sn growth in Ag–Sn–Ag system during transient liquid phase soldering process. Acta Mater. 58, 3429–3443 (2010). https://doi.org/10.1016/j.actamat.2010.02.018

    Article  CAS  Google Scholar 

  11. S. Tikale, K.N. Prabhu, Development of low-silver content SAC0307 solder alloy with Al2O3 nanoparticles. Mater. Sci. Eng. A 787, 139439 (2020). https://doi.org/10.1016/j.msea.2020.139439

    Article  CAS  Google Scholar 

  12. R. Tian, C. Hang, Y. Tian, L. Zhao, Growth behavior of intermetallic compounds and early formation of cracks in Sn–3Ag–0.5Cu solder joints under extreme temperature thermal shock. Mater. Sci. Eng. A 709, 125–133 (2018). https://doi.org/10.1016/j.msea.2017.10.007

    Article  CAS  Google Scholar 

  13. X. Hu, T. Xu, L.M. Keer, Y. Li, X. Jiang, Microstructure evolution and shear fracture behavior of aged Sn3Ag0.5Cu/Cu solder joints. Mater. Sci. Eng. A 673, 167–177 (2016). https://doi.org/10.1016/j.msea.2016.07.071

    Article  CAS  Google Scholar 

  14. T.L. Yang, K.Y. Huang, S. Yang, H.H. Hsieh, C.R. Kao, Growth kinetics of Ag3Sn in silicon solar cells with a sintered ag metallization layer. Sol. Energy Mater. Sol. Cells. 123, 139–143 (2014). https://doi.org/10.1016/j.solmat.2014.01.018

    Article  CAS  Google Scholar 

  15. H. Shao, A. Wu, Y. Bao, Y. Zhao, L. Liu, G. Zou, Interactions at the planar Ag3Sn/liquid sn interface under ultrasonic irradiation. Ultrason. Sonochem. 39, 758–764 (2017). https://doi.org/10.1016/j.ultsonch.2017.05.042

    Article  CAS  PubMed  Google Scholar 

  16. Y. Chen, L. Zhang, J. Xu, J. Fang, X. You, Z. Tan, H. Wang, G. Zhou, S. Wang, W. He, Y. Luo, Y. Ye, Investigation on Cu–Sn intermetallic compounds growth and signal transmission loss of the diverse copper lines after soldering in printed circuit board. J. Mater. Sci. Mater. Electron. 32, 22372–22386 (2021). https://doi.org/10.1007/s10854-021-06723-7

    Article  CAS  Google Scholar 

  17. S. Fürtauer, D. Li, D. Cupid, H. Flandorfer, The Cu–Sn phase diagram, part I: New experimental results. Intermetallics. 34, 142–147 (2013). https://doi.org/10.1016/j.intermet.2012.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. W. Gierlotka, Y.-C. Huang, S.-W. Chen, Phase equilibria of Sn-Sb-Ag ternary system (II): calculation. Metall. Mater. Trans. A 39, 3199–3209 (2008). https://doi.org/10.1007/s11661-008-9671-6

    Article  CAS  Google Scholar 

  19. J. Shen, M. Zhao, P. He, Y. Pu, Growth behaviors of intermetallic compounds at Sn–3Ag–0.5Cu/Cu interface during isothermal and non-isothermal aging. J. Alloys Compd. 574, 451–458 (2013). https://doi.org/10.1016/j.jallcom.2013.05.156

    Article  CAS  Google Scholar 

  20. H. Shao, A. Wu, Y. Bao, Y. Zhao, G.S. Zou, Mechanism of Ag 3 Sn grain growth in Ag/Sn transient liquid phase soldering. T. Nonferr. Metals SoC 27, 722–732 (2017). https://doi.org/10.1016/s1003-6326(17)60080-3

    Article  CAS  Google Scholar 

  21. Y. Li, X. Ren, S. Chen, Y. Qiao, N. Zhao, Formation and evolution of irregularly arranged prism-type Cu6Sn5 grains on electroplated (111) textured Cu. J. Mater. Sci. Mater. Electron. 57, 4369–4382 (2022). https://doi.org/10.1007/s10853-022-06918-1

    Article  CAS  Google Scholar 

  22. C.C. Chang, Y.W. Lin, Y.W. Wang, C.R. Kao, The effects of solder volume and Cu concentration on the consumption rate of Cu pad during reflow soldering. J. Alloys Compd. 492, 99–104 (2010). https://doi.org/10.1016/j.jallcom.2009.11.088

    Article  CAS  Google Scholar 

  23. H. Ma, H. Ma, A. Kunwar, S. Shang, Y. Wang, J. Chen, M. Huang, N. Zhao, Effect of initial Cu concentration on the IMC size and grain aspect ratio in Sn–xCu solders during multiple reflows. J. Mater. Sci. Mater. Electron. 29, 602–613 (2017). https://doi.org/10.1007/s10854-017-7952-9

    Article  CAS  Google Scholar 

  24. H. Li, R. An, C. Wang, Z. Jiang, In situ quantitative study of microstructural evolution at the interface of Sn3.0Ag0.5Cu/Cu solder joint during solid state aging. J. Alloys Compd. 634, 94–98 (2015). https://doi.org/10.1016/j.jallcom.2015.02.088

    Article  CAS  Google Scholar 

  25. T. Xu, X. Hu, Y. Li, X. Jiang, The growth behavior of interfacial intermetallic compound between Sn–3.5Ag–0.5Cu solder and Cu substrate under different thermal-aged conditions. J. Mater. Sci. Mater. Electron. 28, 18515–18528 (2017). https://doi.org/10.1007/s10854-017-7799-0

    Article  CAS  Google Scholar 

  26. Z. Zhu, Y.-C. Chan, Z. Chen, C.-L. Gan, F. Wu, Effect of the size of carbon nanotubes (CNTs) on the microstructure and mechanical strength of CNTs-doped composite Sn0.3Ag0.7Cu-CNTs solder. Mater. Sci. Eng. A 727, 160–169 (2018). https://doi.org/10.1016/j.msea.2018.05.002

    Article  CAS  Google Scholar 

  27. L.C. Tsao, Evolution of nano-Ag3Sn particle formation on Cu–Sn intermetallic compounds of Sn3.5Ag0.5Cu composite solder/Cu during soldering. J. Alloys Compd. 509, 2326–2333 (2011). https://doi.org/10.1016/j.jallcom.2010.11.010

    Article  CAS  Google Scholar 

  28. Y.-W. Sui, R. Sun, J.-Q. Qi, Y.-Z. He, F.-X. Wei, Q.-K. Meng, Z. Sun, Morphologies and evolution of intermetallic compounds formed between Sn1.0Ag0.7Cu composite solder and Cu substrate. Rare Met. 42, 1043–1049 (2017). https://doi.org/10.1007/s12598-017-0968-8

    Article  CAS  Google Scholar 

  29. Y.M. Kim, H.-R. Roh, S. Kim, Y.-H. Kim, Kinetics of intermetallic compound formation at the interface between Sn-3.0Ag-0.5Cu solder and Cu-Zn alloy substrates. J. Electron. Mater. 39, 2504–2512 (2010). https://doi.org/10.1007/s11664-010-1379-x

    Article  CAS  Google Scholar 

  30. F.-J. Wang, F. Gao, X. Ma, Y.-Y. Qian, Depressing effect of 0.2wt.%Zn addition into Sn-3.0Ag-0.5Cu solder alloy on the intermetallic growth with Cu substrate during isothermal aging. J. Electron. Mater. 35, 1818–1824 (2006). https://doi.org/10.1007/s11664-006-0163-4

    Article  CAS  Google Scholar 

  31. L.C. Tsao, C.P. Chu, S.F. Peng, Study of interfacial reactions between Sn3.5Ag0.5Cu composite alloys and Cu substrate. Microelectron. Eng. 88, 2964–2969 (2011). https://doi.org/10.1016/j.mee.2011.04.034

    Article  CAS  Google Scholar 

  32. J. Bang, D.-Y. Yu, Y.-H. Ko, J.-H. Son, H. Nishikawa, C.-W. Lee, Intermetallic compound growth between Sn-Cu-Cr lead-free solder and Cu substrate. Microelectron. Reliab. 99, 62–73 (2019). https://doi.org/10.1016/j.microrel.2019.05.019

    Article  CAS  Google Scholar 

  33. R. Mayappan, A. Salleh, N.A. Tokiran, N.A. Awang, Activation energy for Cu-Sn intermetallic in CNT-reinforced Sn-1.0Ag-0.5Cu solder. Solder Surf. Mt. Tech. 32, 65–72 (2019). https://doi.org/10.1108/ssmt-07-2019-0025

    Article  Google Scholar 

  34. L. Zhang, X.-. Fan, C.-. He, Y.-. Guo, Intermetallic compound layer growth between SnAgCu solder and Cu substrate in electronic packaging. J. Mater. Sci. Mater. Electron. 24, 3249–3254 (2013). https://doi.org/10.1007/s10854-013-1236-9

    Article  CAS  Google Scholar 

  35. L.C. Tsao, Suppressing effect of 0.5wt.% nano-TiO2 addition into Sn–3.5Ag–0.5Cu solder alloy on the intermetallic growth with Cu substrate during isothermal aging. J. Alloys Compd. 509, 8441–8448 (2011). https://doi.org/10.1016/j.jallcom.2011.05.116

    Article  CAS  Google Scholar 

  36. R.W. Wu, L.C. Tsao, S.Y. Chang, C.C. Jain, R.S. Chen, Interfacial reactions between liquid Sn3.5Ag0.5Cu solders and ag substrates. J. Mater. Sci. Mater. Electron. 22, 1181–1187 (2010). https://doi.org/10.1007/s10854-010-0281-x

    Article  CAS  Google Scholar 

  37. A. Lis, M.S. Park, R. Arroyave, C. Leinenbach, Early stage growth characteristics of Ag 3 Sn intermetallic compounds during solid–solid and solid–liquid reactions in the Ag–Sn interlayer system: experiments and simulations. J. Alloys Compd. 617, 763–773 (2014). https://doi.org/10.1016/j.jallcom.2014.08.082

    Article  CAS  Google Scholar 

  38. T.L. Su, L.C. Tsao, S.Y. Chang, T.H. Chuang, Morphology and growth kinetics of Ag3Sn during soldering reaction between liquid Sn and an Ag substrate. J. Mater. Eng. Perform. 11, 365–368 (2002). https://doi.org/10.1361/105994902770343872

    Article  CAS  Google Scholar 

  39. Y.-J. Jeon, M.-S. Kang, Y.-E. Shin, Growth of an Ag3Sn intermetallic compound layer within photovoltaic module ribbon solder joints. Int. J. Pr Eng. Man-GT 7, 89–96 (2019). https://doi.org/10.1007/s40684-019-00028-1

    Article  Google Scholar 

  40. T. Geipel, M. Moeller, A. Kraft, U. Eitner, A comprehensive study of intermetallic compounds in solar cell interconnections and their growth kinetics. Energy Procedia 98, 86–97 (2016). https://doi.org/10.1016/j.egypro.2016.10.084

    Article  CAS  Google Scholar 

  41. W. Yang, Q. Sun, Q. Lei, W. Zhu, Y. Li, J. Wei, M. Li, Formation of a highly conductive thick film by low-temperature sintering of silver paste containing a Bi2O3-B2O3-ZnO glass frit. J. Mater. Process. Tech. 267, 61–67 (2019). https://doi.org/10.1016/j.jmatprotec.2018.09.029

    Article  CAS  Google Scholar 

  42. J. Zhang, G. Li, X. Yuan, H. Zhao, Y. Yang, H. Li, H. Tong, Relation of silver electrode solderability to intermetallic compound growth rate. J. Mater. Sci. Mater. Electron. 30, 7209–7215 (2019). https://doi.org/10.1007/s10854-019-00972-3

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the projects of International cooperation of Huangpu District (No.2022GH14) and Industry-University-Research Collaboration of Zhuhai City (No.2220004002990), and the Innovation Team Project of Zhuhai City (No. ZH0405190005PWC).

Author information

Authors and Affiliations

Authors

Contributions

YC: conceptualization, writing—original draft. JH: investigation, formal analysis, writing—original draft. YH: Investigation, visualization. QL: investigation. HZ: resources. LT: visualization. JL: resources. SW: methodology. WH: supervision, funding acquisition. YH: project administration, writing-review & editing.

Corresponding author

Correspondence to Yuanming Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Huang, J., Huang, Y. et al. Microstructure evolution and growth kinetics of intermetallic compound in SAC305/Ag and SAC305/Cu solder joints during solid-state aging. J Mater Sci: Mater Electron 35, 297 (2024). https://doi.org/10.1007/s10854-024-12043-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12043-3

Navigation