Skip to main content
Log in

Crystal structure, Raman vibrational characteristics, and microwave dielectric properties of Mg2−xCoxTiO4 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of Mg2−xCoxTiO4 (x = 0.0, 0.5, 1.0, 1.5, 2.0) ceramics were synthesized by a conventional solid-state reaction route. The crystal structure, Raman vibrational characteristics, sintering behavior, microstructure, and microwave dielectric properties were systematically investigated. X-ray diffraction patterns and Raman spectroscopy indicated that the Mg2−xCoxTiO4 ceramics all exhibited a single-phase structure with cubic spinel (space group: Fd \(\overline{3 }\) m). The lattice parameters gradually increased with the continuous doping of Co2+ ions according to the Rietveld refinement results. Structure–property relationships were established based on Clausius–Mossotti equations, Raman spectroscopy, and bond valence theory. The εr values of Mg2−xCoxTiO4 ceramics were significantly affected by the ionic polarizability and the [Mg1/Co1O4] stretching vibration. The variation tendency of the Q × f values was closely related to the densification, and packing fraction. Moreover, the “rattling” effect at the A-site, the bond valence of the B-site, and the oxygen bond valence played an important role in controlling the τf values of Mg2−xCoxTiO4 single-phase ceramics. An excellent microwave dielectric property of εr = 15.88, Q × f = 38,157 GHz, and τf = − 32.21 ppm/°C can be obtained for Mg2−xCoxTiO4 ceramics with x = 1.0 sintered at 1350 °C for 4 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Y.Q. Guo, Y.M. Pan, S.Y. Zheng, K. Lu, IEEE Trans. Veh. Technol. 70, 5419 (2021)

    Article  Google Scholar 

  2. M.D. Hill, D.B. Cruickshank, I.A. MacFarlane, Appl. Phys. Lett. 12, 120501 (2021)

    Article  Google Scholar 

  3. M. Shehbaz, C. Du, D. Zhou, S. Xia, Z. Xu, Appl. Phys. Rev. 10, 021303 (2023)

    Article  ADS  CAS  Google Scholar 

  4. L.X. Li, Y.T. Li, J.L. Qiao, M.K. Du, J. Mater. Sci. Technol. 146, 186 (2023)

    Article  CAS  Google Scholar 

  5. W.C. Lou, M.M. Mao, K.X. Song, K.W. Xu, B. Liu, W.J. Li, B. Yang, Z.M. Qi, J.W. Zhao, S.K. Sun, H.X. Lin, Y.Y. Hu, D. Zhou, D.W. Wang, I.M. Reaney, J. Eur. Ceram. Soc. 42, 2820 (2022)

    Article  CAS  Google Scholar 

  6. H.T. Kim, Y. Kim, M. Valant, D. Suvorov, J. Am. Ceram. Soc. 84, 1081 (2001)

    Article  CAS  Google Scholar 

  7. A. Belous, O. Ovchar, D. Durilin, M.M. Krzmanc, M. Valant, D. Suvorov, J. Am. Ceram. Soc. 89, 3441 (2006)

    Article  CAS  Google Scholar 

  8. C.L. Huang, J.Y. Chen, J. Am. Ceram. Soc. 92, 2237 (2009)

    Article  CAS  Google Scholar 

  9. C.L. Huang, J.Y. Chen, J. Am. Ceram. Soc. 92, 675 (2009)

    Article  CAS  Google Scholar 

  10. S. Butee, A.R. Kulkarni, O. Prakash, R.P.R.C. Aiyar, K. Sudheendran, K.C.R. James, Mater. Sci. Eng. B 168, 151 (2010)

    Article  CAS  Google Scholar 

  11. C.L. Huang, C.E. Ho, Int. J. Appl. Ceram. Technol. 7, 163 (2010)

    Google Scholar 

  12. S.H. Kim, E.S. Kim, Int. J. Nanotechnol. 15, 578 (2018)

    Article  ADS  CAS  Google Scholar 

  13. S.C. Liu, H. Li, R. Xiang, P.C. Zhang, X.Q. Chen, Q.Z. Wen, H.L. Hu, Ceram. Int. 47, 33064 (2021)

    Article  CAS  Google Scholar 

  14. R. Xiang, H.L. Hu, P.C. Zhang, H. Li, W.P. Gong, G.T. Chen, B. Yang, Ceram. Int. 49, 12959 (2023)

    Article  CAS  Google Scholar 

  15. R.K. Bhuyan, T.S. Kumar, D. Goswami, A.R. James, D. Pamu, J. Electroceram. 31, 48 (2013)

    Article  CAS  Google Scholar 

  16. R.K. Bhuyan, T.S. Kumar, D. Goswami, A.R. James, A. Perumal, D. Parnu, Mater. Sci. Eng. B 178, 471 (2013)

    Article  CAS  Google Scholar 

  17. R.K. Bhuyan, T. Kumar, D.S. Pamu, J.M. Renehan, M.V. Jacob, Mater. Express 5, 349 (2014)

    Article  Google Scholar 

  18. R.K. Bhuyan, T. Kumar, D.S. Pamu, Ferroelectrics 516, 173 (2017)

    Article  ADS  CAS  Google Scholar 

  19. C.L. Huang, J.Y. Chen, J. Alloys Compd. 485, 706 (2009)

    Article  CAS  Google Scholar 

  20. C.L. Huang, J.Y. Chen, B.J. Li, J. Alloys Compd. 509, 4247 (2011)

    Article  CAS  Google Scholar 

  21. H.F. Zhou, X.B. Liu, X.L. Chen, L. Fang, Y.L. Wang, J. Eur. Ceram. Soc. 32, 261 (2012)

    Article  CAS  Google Scholar 

  22. X. Du, S. Hua, H. Zhang, Y. Jing, Z. Zhou, G. Gan, X. Tang, Ceram. Int. 44, 2300 (2018)

    Article  CAS  Google Scholar 

  23. Y. Lai, X. Tang, X. Huang, H. Zhang, X. Liang, J. Li, H. Su, J. Eur. Ceram. Soc. 38, 1508 (2018)

    Article  CAS  Google Scholar 

  24. M. Zhong, X. Tang, Y. Li, Y. Jing, H. Su, Ceram. Int. 46, 18667 (2020)

    Article  CAS  Google Scholar 

  25. H.M. Rietveld, J. Appl. Cryst. 2, 65 (1969)

    Article  ADS  CAS  Google Scholar 

  26. Y. Kobayashi, M. Katoh, IEEE Trans. Microw. Theory Tech. 33, 586 (1985)

    Article  ADS  Google Scholar 

  27. W.E. Courtney, IEEE Trans. Microw. Theory 18, 476 (1970)

    Article  Google Scholar 

  28. B.W. Hakki, P.D. Coleman, I.R.E. Trans, Microw. Theory. 8, 402 (1960)

    Article  Google Scholar 

  29. M. Petrova, G.A. Mikirticheva, A. Novikova, J. Mater. Res. 12, 2584 (1997)

    Article  ADS  CAS  Google Scholar 

  30. R.D. Shannon, Acta Crystallogr. A 32, 751 (1976)

    Article  ADS  Google Scholar 

  31. M.X. Han, H. Tang, L. Liu, Y.Q. Wang, X.F. Zhang, L. Lv, J. Phys. Chem. C 125, 15687 (2021)

    Article  CAS  Google Scholar 

  32. H. Li, R. Xiang, X.Q. Chen, H.W. Hua, S.Q. Yu, B. Tang, G.T. Chen, S.R. Zhang, Ceram. Int. 46, 4235 (2020)

    Article  CAS  Google Scholar 

  33. Z. Wang, R.T. Downs, V. Pischedda, R. Shetty, S.K. Saxena, C.S. Zha, Y.S. Zhao, D. Schiferl, A. Waskowska, Phys. Rev. B 68, 094101 (2003)

    Article  ADS  Google Scholar 

  34. J.J. Zhang, J.W. Zhai, J.Y. Wang, J. Shao, X. Lu, X. Yao, J. Appl. Phys. 107, 014106 (2010)

    Article  ADS  Google Scholar 

  35. S. Kumar, B.H. Koo, H. Choi, D. Kim, C.G. Lee, R. Kumar, J. Ceram. Soc. Jpn. 117, 689 (2009)

    Article  CAS  Google Scholar 

  36. R. Xiang, H. Li, P.C. Zhang, X.Q. Chen, H.L. Hu, Q.Z. Wen, S.C. Liu, Ceram. Int. 47, 8447 (2021)

    Article  CAS  Google Scholar 

  37. V.M. Ferreira, J.L. Baptista, S. Kamba, J. Petzelt, J. Mater. Sci. 28, 5894 (1993)

    Article  ADS  CAS  Google Scholar 

  38. H.C. Yang, S.R. Zhang, H.Y. Yang, Y. Yuan, E.Z. Li, J. Alloys Compd. 787, 358 (2019)

    Article  CAS  Google Scholar 

  39. G.D. Mahan, Solid State Commun. 33, 798 (1980)

    Article  ADS  Google Scholar 

  40. R.D. Shannon, J. Appl. Phys. 73, 348 (1993)

    Article  ADS  CAS  Google Scholar 

  41. S.J. Penn, N.M. Alford, A. Templeton, X.R. Wang, M.S. Xu, M. Reece, K. Schrapel, J. Am. Ceram. Soc. 7, 1885 (1997)

    Article  Google Scholar 

  42. Y. Tang, S.Y. Shen, J. Li, X.G. Zhao, H.C. Xiang, H.P. Su, D. Zhou, L. Fang, J. Eur. Ceram. Soc. 42, 4573 (2022)

    Article  CAS  Google Scholar 

  43. A. Belous, O. Ovchar, D. Durilin, M.M. Krzmanc, M. Valant, D. Suvorov, J. Am. Ceram. Soc. 89, 3441 (2010)

    Article  Google Scholar 

  44. J. Zhang, R.Z. Zuo, J. Am. Ceram. Soc. 99, 1 (2016)

    Article  Google Scholar 

  45. A. Kan, H. Okazaki, H. Ogawa, Jpn. J. Appl. Phys. (2019). https://doi.org/10.7567/1347-4065/ab34af

    Article  Google Scholar 

  46. A.D. Arulsamy, Ann. Phys. 326, 541 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  47. N.E. Brese, M. O’Keeffe, Acta Crystallogr. B 48, 152 (1992)

    Article  ADS  Google Scholar 

  48. N.E. Brese, M. O’Keeffe, Acta Crystallogr. B 47, 192 (1991)

    Article  ADS  Google Scholar 

  49. K.P. Surendran, P.V. Bijumon, P. Mohanan, M.T. Sebastian, Appl. Phys. A Mater. Sci. Process. 81, 823 (2005)

    Article  ADS  CAS  Google Scholar 

  50. P. Fu, Z.Y. Wang, Z.D. Lin, Y.Q. Liu, V.A.L. Roy, J. Mater. Sci. Mater. Electron. 28, 9589 (2017)

    Article  CAS  Google Scholar 

  51. T.Y. Qin, C.W. Zhong, Y. Qin, B. Tang, S.R. Zhang, Ceram. Int. 46, 19046 (2020)

    Article  CAS  Google Scholar 

  52. Y. Ding, C.C. Hu, W.Q. Sheng, K.X. Song, B. Liu, J. Mater. Sci. Mater. Electron. 32, 22813 (2021)

    Article  CAS  Google Scholar 

  53. W. Yi, Z. Lu, X. Liu, D. Huang, Z. Jia, Z. Chen, X. Wang, H. Zhu, J. Mater. Sci. Mater. Electron. 32, 7719 (2021)

    Article  CAS  Google Scholar 

  54. T.Y. Qin, C.W. Zhong, Y. Shang, L. Cao, M.X. Wang, B. Tang, S.R. Zhang, J. Alloys Compd. 886, 161278 (2021)

    Article  CAS  Google Scholar 

  55. F. Yang, Y.M. Lai, Y.M. Zeng, Q. Zhang, J. Han, X.L. Zhong, H. Su, Ceram. Int. 47, 22522 (2021)

    Article  CAS  Google Scholar 

  56. Y.M. Lai, M. Yin, B.Y. Li, X.Z. Yang, W.P. Gong, F. Yang, Q. Zhang, F.S. Wang, C.S. Wu, H.J. Li, Nanomaterials 12, 3332 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Y.B. Chen, Y. Fan, J. Aust. Ceram. Soc. 47, 7380 (2023)

    Google Scholar 

  58. X. Li, X.Z. Yang, Y.M. Lai, Q. Zhang, B.Y. Li, C. Qi, J. Yin, F.S. Wang, C.S. Wu, H. Su, Chin. Phys. B 32, 057701 (2023)

    Article  ADS  Google Scholar 

  59. C. Qi, X.Z. Yang, Y.M. Lai, W.P. GongC, F.Y. Huang, X. Li, J. Yin, G. Jiang, C.S. Wu, H. Su, Adv. Eng. Mater. 25, 2300169 (2023)

    Article  CAS  Google Scholar 

  60. R.G. Shi, S.K. Zhu, R. Muhammad, T. Zhou, B. Liu, M.M. Mao, D.W. Wang, K.X. Song, J. Eur. Ceram. Soc. 43, 3324 (2023)

    Article  CAS  Google Scholar 

  61. Y.J. Wang, J. Li, W.S. Fang, Y. Tang, Z.Y. Zhang, H.C. Xiang, L. Fang, Ceram. Int. 49, 35420 (2023)

    Article  CAS  Google Scholar 

  62. J. Yin, X.Z. Yang, Y.M. Lai, Q. Zhang, J. Cent, South Univ. 30, 1461 (2023)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51772022).

Funding

This work was supported by the National Natural Science Foundation of China (No. 51772022).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by WH and YJ. The first draft of the manuscript was written by WH and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yingchun Zhang.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Jiang, H., Yang, X. et al. Crystal structure, Raman vibrational characteristics, and microwave dielectric properties of Mg2−xCoxTiO4 ceramics. J Mater Sci: Mater Electron 35, 294 (2024). https://doi.org/10.1007/s10854-024-12035-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12035-3

Navigation