Skip to main content
Log in

Dielectric tunability of 0.94Na0.5Bi0.5TiO3-0.06BaTiO3 porous ceramics with oriented pore structure

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The dielectric tunability of dielectric materials has potential application value in many devices. The introduction of porous structures is beneficial to broaden the range of dielectric constants of ceramics and improve their dielectric tunability. In this study, the porous ceramics of 0.94Na0.5Bi0.5TiO3-0.06BaTiO3 (BNT-6BT) were prepared using walnut shell as a sacrificial template. The addition of walnut shell powder produces an ordered columnar porous structure within the ceramic, resulting in porosity ranging from 0 to 20%. Porous ceramics show lower dielectric constants, but higher tunability. There is an improvement in the dielectric constant stability of porous ceramics. The ceramic layer between the ordered pores provides an effective barrier to microstress and strain in the vicinity of the pore structure, so that the longitudinal piezoelectric coefficient d33, and the transverse piezoelectric coefficient d31 decrease slowly with increasing porosity, maintaining the desired piezoelectric properties. The porous BNT-6BT ceramics studied in this paper can be used in piezoelectric transducers, broadening their potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article. All data generated and analyzed during this study are included in this article.

References

  1. F. Rehman, J.B. Li, P. Ahmed, M.S. Khan, M. Zubair, Rare Met. 40, 1247–1254 (2021). https://doi.org/10.1007/s12598-020-01634-8

    Article  CAS  Google Scholar 

  2. A. Zeb, S.J. Milne, J. Am. Ceram. Soc. 96, 2887–2892 (2013). https://doi.org/10.1111/jace.12412

    Article  CAS  Google Scholar 

  3. D. Feng, H. Du, H. Ran, T. Lu, S. Xia, L. Xu, Z. Wang, C. Ma, J. Solid State Chem. 310, 123081 (2022). https://doi.org/10.1016/j.jssc.2022.123081

    Article  CAS  Google Scholar 

  4. Y. Zhang, H. Du, J. Lu, Z. Li, T. Lu, Y. Hu, Y. Ma, Fuel. 334, 126683 (2023). https://doi.org/10.1016/j.fuel.2022.126683

    Article  CAS  Google Scholar 

  5. H. Du, C. Ma, W. Ma, H. Wang, Process. Appl. Ceram. 12, 303–312 (2018). https://doi.org/10.2298/PAC1804303D

    Article  CAS  Google Scholar 

  6. Y. Hu, H. Du, J. Lu, Z. Li, Y. Ma, S. Song, Fuel. 354, 129417 (2023). https://doi.org/10.1016/j.fuel.2023.129417

    Article  CAS  Google Scholar 

  7. T.T. Xu, C.A. Wang, J. Eur. Ceram. Soc. 36, 2647–2652 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.03.032

    Article  CAS  Google Scholar 

  8. C. Ma, R. Zhang, G. Zhang, H. Du, J. Liu, R. Liang, Z. Wang, J. Energy Storage. 72, 108374 (2023). https://doi.org/10.1016/j.est.2023.108374

    Article  Google Scholar 

  9. H. Ran, H. Du, C. Ma, Y. Zhao, D. Feng, H. Xu, Sci. Adv. Mater. 13, 741–747 (2021). https://doi.org/10.1166/sam.2021.3943

    Article  CAS  Google Scholar 

  10. E.D. Pinheiro, T. Deivarajan, Acta Phys. Pol. A 136, 555–565 (2019). https://doi.org/10.12693/APhysPolA.136.555

    Article  ADS  CAS  Google Scholar 

  11. C.R. Bowen, A. Perry, A.C.F. Lewis, H. Kara, J. Eur. Ceram. Soc. 24, 541–545 (2004). https://doi.org/10.1016/S0955-2219(03)00194-8

    Article  CAS  Google Scholar 

  12. E. Mercadelli, C. Galassi, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 68, 217–228 (2020). https://doi.org/10.1109/TUFFC.2020.3006248

    Article  Google Scholar 

  13. S.Z. Salleh, A.A. Kechik, A.H. Yusoff, M.A.A. Taib, M.M. Nor, M. Mohamad, T.G. Tan, A. Ali, M.N. Masri, J.J. Mohamed, J. Clean. Prod. 306, 127264 (2021). https://doi.org/10.1016/j.jclepro.2021.127264

    Article  CAS  Google Scholar 

  14. T.T. Dele-Afolabi, M.A.A. Hanim, M. Norkhairunnisa, S. Sobri, R. Calin, Ceram. Int. 43, 1633–1649 (2017). https://doi.org/10.1016/j.ceramint.2016.10.177

    Article  CAS  Google Scholar 

  15. L. Sun, Y. Gong, D. Li, C. Pan, Green. Chem. 24, 3864–3894 (2022). https://doi.org/10.1039/D2GC00099G

    Article  CAS  Google Scholar 

  16. T. Dele-Afolabi, A.H. Mohamed Ariff, N. Mazlan, S. Sobri, R. Calin, I. Zahari Nur, Int. J. Appl. Ceram. Technol. 15, 1060–1071 (2018). https://doi.org/10.1111/ijac.12874

    Article  CAS  Google Scholar 

  17. X. Li, Y. Li, S. Li, Z. Wei, R. Xiang, Int. J. Appl. Ceram. Technol. 17, 2465–2472 (2020). https://doi.org/10.1111/ijac.13580

    Article  CAS  Google Scholar 

  18. H. Xu, H. Du, L. Kang, Q. Cheng, D. Feng, S. Xia, J. Renew. Mater. 9, 2129–2141 (2021). https://doi.org/10.32604/jrm.2021.016090

    Article  CAS  Google Scholar 

  19. F. Baino, M. Ferraris, Int. J. Appl. Ceram. Technol. 14, 507–520 (2017). https://doi.org/10.1111/ijac.12677

    Article  CAS  Google Scholar 

  20. M.-A. Shahbazi, M. Ghalkhani, H. Maleki, Adv. Eng. Mater. 22, 2000033 (2020). https://doi.org/10.1002/adem.202000033

    Article  CAS  Google Scholar 

  21. S. Deville, Scr. Mater. 147, 119–124 (2018). https://doi.org/10.1016/j.scriptamat.2017.06.020

    Article  CAS  Google Scholar 

  22. F. Ram, K. Suresh, A. Torris, G. Kumaraswamy, K. Shanmuganathan, Ceram. Int. 47, 15750–15758 (2021). https://doi.org/10.1016/j.ceramint.2021.02.147

    Article  CAS  Google Scholar 

  23. M. Yan, S. Liu, Z. Xiao, X. Yuan, D. Zhai, K. Zhou, D. Zhang, G. Zhang, C. Bowen, Y. Zhang, Ceram. Int. 48, 5017–5025 (2022). https://doi.org/10.1016/j.ceramint.2021.11.039

    Article  CAS  Google Scholar 

  24. P. Dixit, S. Seth, B. Rawal, B.P. Kumar, H.S. Panda, J. Mater. Sci. Mater. Electron. 32, 5393–5403 (2021). https://doi.org/10.1007/s10854-021-05262-5

    Article  CAS  Google Scholar 

  25. S. Zhu, L. Cao, Z. Xiong, C. Lu, Z. Gao, J. Eur. Ceram. Soc. 38, 2251–2255 (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.10.033

    Article  CAS  Google Scholar 

  26. H. Qiu, H. Sun, X. Liu, H. Sui, D. Huang, J. Mater. Sci. Mater. Electron. 33, 12171–12181 (2022). https://doi.org/10.1007/s10854-022-08177-x

    Article  CAS  Google Scholar 

  27. R. Guo, J.I. Roscow, C.R. Bowen, H. Luo, Y. Huang, Y. Ma, K. Zhou, D. Zhang, J. Mater. Chem. A 8, 3135–3144 (2020). https://doi.org/10.1039/x0xx00000x

    Article  CAS  Google Scholar 

  28. O. Tokay, M. Yazıcı, Mater. Today Commun. 31, 103358 (2022). https://doi.org/10.1016/j.mtcomm.2022.103358

    Article  CAS  Google Scholar 

  29. C. Ma, H. Du, J. Liu, X. Du, D. Feng, Ceram. Int. 48, 5428–5433 (2022). https://doi.org/10.1016/j.ceramint.2021.11.086

    Article  CAS  Google Scholar 

  30. L. Du, X. Du, L. Zhang, Q. An, W. Ma, H. Ran, H. Du, J. Eur. Ceram. Soc. 38, 2767–2773 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.02.011

    Article  CAS  Google Scholar 

  31. Y. Zhang, M. Xie, J. Roscow, C. Bowen, Mater. Res. Bull. 112, 426–431 (2019). https://doi.org/10.1016/j.materresbull.2018.08.031

    Article  CAS  Google Scholar 

  32. S. Abhinay, P. Dixit, R. Mazumder, Ferroelectrics. 557, 18–27 (2020). https://doi.org/10.1080/00150193.2020.1713359

    Article  ADS  CAS  Google Scholar 

  33. T. Lu, H. Du, N. Kong, H. Li, S. Xu, Z. Li, X. Du, J. Mater. Sci. Mater. Electron. 34, 797 (2023). https://doi.org/10.1007/s10854-023-10197-0

    Article  CAS  Google Scholar 

  34. S. Xia, H. Du, Z. Li, F. Zhao, Q. Li, Y. Hu, L. Kang, Coatings. 13, 805 (2023). https://doi.org/10.3390/coatings13040805

    Article  CAS  Google Scholar 

  35. X. Zhou, G. Xue, H. Luo, C.R. Bowen, D. Zhang, Prog. Mater. Sci. 122, 100836 (2021). https://doi.org/10.1016/j.pmatsci.2021.100836

    Article  CAS  Google Scholar 

  36. J. Hu, S. Li, Y. Li, Z. Wei, X. Li, C. Dong, Y. Zhang, Y. Fan, J. Aust. Ceram. Soc. 57, 1553–1562 (2021). https://doi.org/10.1007/s41779-021-00660-8

    Article  CAS  Google Scholar 

  37. H. Banno, Am. Ceram. Soc. Bull. 66, 1332–1337 (1987). https://doi.org/10.7567/JJAPS.26S2.50

    Article  CAS  Google Scholar 

  38. N. Ma, B.-P. Zhang, W.-G. Yang, D. Guo, J. Eur. Ceram. Soc. 32, 1059–1066 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.11.014

    Article  CAS  Google Scholar 

  39. V.A. Lukacs, R. Stanculescu, L. Curecheriu, C.E. Ciomaga, N. Horchidan, C. Cioclea, L. Mitoseriu, Ceram. Int. 46, 523–530 (2020). https://doi.org/10.1016/j.ceramint.2019.08.292

    Article  CAS  Google Scholar 

  40. Z. Yao, H. Liu, Y. Liu, Z. Wu, Z. Shen, Y. Liu, M. Cao, Mater. Chem. Phys. 109, 475–481 (2008). https://doi.org/10.1016/j.matchemphys.2007.12.019

    Article  CAS  Google Scholar 

  41. J.R. Whyte, R.G.P. Mcquaid, P. Sharma, C. Canalias, J.F. Scott, A. Gruverman, J.M. Gregg, Adv. Mater. 26, 293–298 (2014). https://doi.org/10.1002/adma.201303567

    Article  CAS  PubMed  Google Scholar 

  42. Z.-Y. Shen, J.-F. Li, J. Ceram. Soc. Jpn. 118, 940–943 (2010). https://doi.org/10.2109/jcersj2.118.940

    Article  CAS  Google Scholar 

Download references

Funding

Funding was provided by the National Natural Science Foundation of China (Grant No. 52172099) and Provincial Joint Fund of Shaanxi (Grant No. 2021JLM-28).

Author information

Authors and Affiliations

Authors

Contributions

SX contributed to investigation, material preparation, data curation, and original draft writing. HD contributed to conceptualization and resources. YZ contributed to visualization. YH and ZT contributed to validation. YL contributed to formal analysis. XD participated in methodology.

Corresponding author

Correspondence to Huiling Du.

Ethics declarations

Conflict of interest

The authors declare that there are no known competing economic interests or human relationships of interest that would influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Du, H., Zhang, Y. et al. Dielectric tunability of 0.94Na0.5Bi0.5TiO3-0.06BaTiO3 porous ceramics with oriented pore structure. J Mater Sci: Mater Electron 35, 284 (2024). https://doi.org/10.1007/s10854-024-12034-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12034-4

Navigation