Skip to main content
Log in

Thermoelectric transportation in indium doped bismuth oxyselenide (Bi2-xInxO2Se) ceramics consolidated by conventional isostatic pressing

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Thermoelectric (TE) devices are gaining significant consideration from the renewable energy community because of their environment friendliness. In this study, a series of indium (In) doped bismuth oxyselenide (Bi2-xInxO2Se) ceramics has been prepared through a facile hydrothermal route followed by consolidation into bulk pellets using Isostatic Pressing. The effects of indium doping on crystal structure, microstructure and thermoelectric properties have been systematically investigated. The detailed structural characterization reveals the partial substitution of In into the lattice of Bi2SeO2 at Bi-site along with the formation of a secondary phase (Bi4O8Se). The highest power factor (PF) of 17.40 µW/mK2 has been achieved at 500 K. In-doping has introduced defects into the lattice to offer strong scattering site for phonons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Graphical research data is attached in the manuscript and numerical data is available on request.

References

  1. C. McGlade, P. Ekins, The geographical distribution of fossil fuels unused when limiting global warming to 2 C. Nature 517(7533), 187–190 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. U. S. E. I. Administration, E.u.i.i. 09/17, 2019

  3. S. Brückner et al., Industrial waste heat recovery technologies: an economic analysis of heat transformation technologies. Appl. Energy 151, 157–167 (2015)

    Article  ADS  Google Scholar 

  4. T.M. Tritt, Thermoelectric materials: principles, structure, properties, and applications. (2002)

  5. P.K. Sharma et al., Revisiting the thermoelectric properties of lead telluride. Mater. Today Energy 21, 100713 (2021)

    Article  CAS  Google Scholar 

  6. S. Byun et al., Unusual n-type thermoelectric properties of Bi2Te3 doped with divalent alkali earth metals. J. Solid State Chem. 269, 396–400 (2019)

    Article  ADS  CAS  Google Scholar 

  7. M. Noroozi et al., Unprecedented thermoelectric power factor in SiGe nanowires field-effect transistors. ECS J. Solid State Sci. Technol. 6(9), Q114 (2017)

    Article  CAS  Google Scholar 

  8. G. Ren et al., High performance oxides-based thermoelectric materials. JOM 67(1), 211–221 (2015)

    Article  MathSciNet  CAS  Google Scholar 

  9. Y.-C. Liu et al., Influence of Ag doping on thermoelectric properties of BiCuSeO. J. Eur. Ceram. Soc. 35(2), 845–849 (2015)

    Article  MathSciNet  CAS  Google Scholar 

  10. C. Zeng et al., Enhanced thermoelectric performance of SmBaCuFeO5+δ/Ag composite ceramics. J. Am. Ceram. Soc. 99(4), 1266–1270 (2016)

    Article  CAS  Google Scholar 

  11. G. Constantinescu et al., Effect of Sr substitution for Ca on the Ca3Co4O9 thermoelectric properties. J. Alloy. Compd. 577, 511–515 (2013)

    Article  CAS  Google Scholar 

  12. A. Sotelo et al., Effect of synthesis methods on the Ca3Co4O9 thermoelectric ceramic performances. J. Solid State Chem. 221, 247–254 (2015)

    Article  ADS  CAS  Google Scholar 

  13. R. Kabir et al., Improvement in the thermoelectric properties of CaMnO3 perovskites by W doping. J. Mater. Sci. 49, 7522–7528 (2014)

    Article  ADS  CAS  Google Scholar 

  14. F. Li et al., Polycrystalline BiCuSeO oxide as a potential thermoelectric material. Energy Environ. Sci. 5(5), 7188–7195 (2012)

    Article  CAS  Google Scholar 

  15. S. Butt et al., High-temperature thermoelectric properties of La and Fe co-doped Ca–Co–O misfit-layered cobaltites consolidated by spark plasma sintering. J. Alloy. Compd. 588, 277–283 (2014)

    Article  CAS  Google Scholar 

  16. B. Zhan et al., High-temperature thermoelectric behaviors of Sn-doped n-type Bi2O2Se ceramics. J. Electroceram. 34(2), 175–179 (2015)

    Article  CAS  Google Scholar 

  17. H. Oppermann, H. Göbel, U. Petasch, Zustandsbarogramme—Zustandsdiagramme durch Gesamtdruckmessungen. J. Therm. Anal. 47, 595–604 (1996)

    Article  CAS  Google Scholar 

  18. P. Schmidt, O. Rademacher, H. Oppermann, Untersuchung der Phasenbeziehungen in quaternären systemen Bi2O3/Bi2Ch/Bi2Ch (Ch= S, Se, Te). Z. Anorg. Allg. Chem. 625(2), 255–261 (1999)

    Article  CAS  Google Scholar 

  19. B Zhan, S Butt, Y Liu, JL Lan, CW Nan, YH Lin, High-temperature thermoelectric behaviors of Sn-doped n-type Bi2O2Se ceramics. J. Electroceram. 34, 175–179 (2015)

    Article  CAS  Google Scholar 

  20. P. Ruleova et al., Thermoelectric properties of Bi2O2Se. Mater. Chem. Phys. 119(1–2), 299–302 (2010)

    Article  CAS  Google Scholar 

  21. X. Tan et al., Boosting the thermoelectric performance of Bi2O2Se by isovalent doping. J. Am. Ceram. Soc. 101(10), 4634–4644 (2018)

    Article  CAS  Google Scholar 

  22. J.-L. Jiang et al., Effect of Ta doping on the microstructure and thermoelectric properties of Bi2O2Se. Metals 12(11), 1881 (2022)

    Article  CAS  Google Scholar 

  23. X. Tan et al., Enhanced thermoelectric performance of n-type Bi2O2Se by Cl-doping at Se site. J. Am. Ceram. Soc. 100(4), 1494–1501 (2017)

    Article  CAS  Google Scholar 

  24. H. Hong et al., Enhancement of the thermoelectric performance of n− type Bi2O2Se by Ce4+ doping. J. Market. Res. 15, 4161–4172 (2021)

    CAS  Google Scholar 

  25. S. Butt et al., One-step rapid synthesis of Cu2Se with enhanced thermoelectric properties. J. Alloy. Compd. 786, 557–564 (2019)

    Article  CAS  Google Scholar 

  26. X. Zhang et al., Thermoelectric properties of n-type Nb-doped Ag8SnSe6. J. Appl. Phys. (2016). https://doi.org/10.1063/1.4945033

    Article  Google Scholar 

  27. W. Xu et al., Nanoscale heterogeneity in thermoelectrics: the occurrence of phase separation in Fe-doped Ca3Co4O9. Phys. Chem. Chem. Phys. 18(21), 14580–14587 (2016)

    Article  CAS  PubMed  Google Scholar 

  28. M.U. Farooq et al., Enhanced thermoelectric efficiency of Cu2−xSe–Cu2S composite by incorporating Cu2S nanoparticles. Ceram. Int. 42(7), 8395–8401 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All the authors are thankful to the Higher Education Commission (HEC) of Pakistan for financial support through the 8096/NRPU/R&D/HEC/2017 project.

Author information

Authors and Affiliations

Authors

Contributions

MWA: Conceptualization and research methodology, Experimentation and characterization, drafting and analyzing data; SB: research methodology, analysis, reviewing and editing, MS: Experimentation, reviewing and editing, MI: Experimentation, Analysis, Reviewing and editing, MAB: Reviewing and editing MAA: Reviewing and editing.

Corresponding author

Correspondence to Muhammad Waseem Akram.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akram, M.W., Butt, S., Saadullah, M. et al. Thermoelectric transportation in indium doped bismuth oxyselenide (Bi2-xInxO2Se) ceramics consolidated by conventional isostatic pressing. J Mater Sci: Mater Electron 35, 272 (2024). https://doi.org/10.1007/s10854-024-12032-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12032-6

Navigation