Skip to main content
Log in

Preparation and thermoelectric properties of iodine-doped Bi2Te3-Bi2Se3 solid solutions

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Bismuth chalcogenides, such as p-type (Bi,Sb)2Te3 and n-type Bi2(Te,Se)3, are known to have excellent thermoelectric properties at temperatures near room temperature. Since Bi2Te3, Sb2Te3 and Bi2Se3 have the same class of crystal symmetry, they can form homogeneous solid solutions. The thermoelectric figure of merit can be improved by increasing the power factor through doping to optimize the carrier concentration and/or by reducing the thermal conductivity through the formation of solid solutions for phonon scattering. In this study, n-type Bi2Te2.7Se0.3:I m (m = 0.0 − 0.015) solid solutions were successfully prepared by using encapsulated melting and hot pressing. The increase in the carrier concentration induced by I doping led to an increase in both the electrical conductivity and the electronic thermal conductivity, with I atoms acting as phonon scattering centers reducing the lattice thermal conductivity. The undoped solid solution had a carrier concentration of 6.27 × 1019 cm−3, a power factor (PF) of 1.71 mWm−1K−2, and a dimensionless figure of merit (ZT) of 0.54 at 323 K. However, the ZT value was improved by I doping due to the increased PF, demonstrating a maximum of ZT = 1.13 at 423 K for Bi2Te2.7Se0.3:I0.0075.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. E. Bell, Science 321, 1457 (2008).

    Article  ADS  Google Scholar 

  2. G. S. Nolas, J. Sharp and J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (Springer, New York, 2011).

    Google Scholar 

  3. R. Venkatasubramanian, E. Siivola, T. Colpitts and B. O’Quinn, Nature 413, 597 (2001).

    Article  ADS  Google Scholar 

  4. H. Li, H. Jing, Y. Han, Y. Xu, G. Q. Lu and L. Xu, J. Alloys Compd. 576, 369 (2013).

    Article  Google Scholar 

  5. C. D. Moon and T. S. Kim. J. Alloys Compd. 536, 559 (2012).

    Article  Google Scholar 

  6. Y. C. Lan, A. J. Minnich, G. Chen and Z. F. Ren, Adv. Funct. Mater. 20, 357 (2010).

    Article  Google Scholar 

  7. S. Wang, W. Xie, H. Li and X. Tang, Intermetallics 19, 1024 (2011).

    Article  Google Scholar 

  8. J. H. Yim, S. H. Baek, H. Y. Shin, D. B. Hyun and J. S. Kim, J. Electron. Mater. 42, 2178 (2013).

    Article  ADS  Google Scholar 

  9. J. R. Drabble and C. H. L. Goodman, J. Phys. Chem. Solids 5, 142 (1958).

    Article  ADS  Google Scholar 

  10. L. V. Prokofieva, D. A. Pshenay-Severin, P. P. Konstantinov and A. A. Shabaldin, Semiconductor 43, 976 (2009).

    ADS  Google Scholar 

  11. N. Keawprak, S. Lao-ubol, C. Eamchotchawalit and Z. M. Sun, J. Alloys Compd. 509, 9301 (2011).

    Article  Google Scholar 

  12. X. F. Tang, W. J. Xie, H. Li, W. Y. Zhao and Q. J. Zhang, J. Appl. Phys. Lett. 90, 012102 (2007).

    Article  ADS  Google Scholar 

  13. G. Kavei and M. A. Karami, Mater. Res. Bull. 43, 239 (2008).

    Article  Google Scholar 

  14. J. R. Szczech, J. M. Higgins and S. Jin, J. Mater. Chem. 21, 4037 (2011).

    Article  Google Scholar 

  15. S. Wang, H. Li, R. Lu, G. Zheng and X. Tang, Nanotechnology 24, 285702 (2013).

    Article  Google Scholar 

  16. J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka and G. J. Snyder, Science 321, 554 (2008).

    Article  ADS  Google Scholar 

  17. K. Termentzidis, O. Pokropyvnyy, M. Woda, S. Xiong, Y. Chumakov, P. Cortona and S. Volz, J. Appl. Phys. 113, 013506 (2013).

    Article  ADS  Google Scholar 

  18. J. Przyluski and K. Borkowski, Proceedings of the 4th International Conference on Thermoelectric Energy Conversion, Arlington, TX, USA (1982).

    Google Scholar 

  19. N. K. Abrikosov, V. F. Bankina, L. V. Poretskaya, L. E. Shelimova and E. V. Skudnova, Semiconducting II–VI, IV–VI and V–VI Compounds (Plenum Press, New York, 1969).

    Google Scholar 

  20. W. Masterton, C. Hurely and E. Neth, Chemistry: Principles and Reactions (Cengage Learning, Belmont, 2011).

    Google Scholar 

  21. X. Zhang, X. Y. Ma, Q. M. Lu, F. P. Zhang, Y. Q. Liu, J. X. Zhang and L. Wang, J. Electron. Mater. 40, 5 (2011).

    Google Scholar 

  22. D. M. Lowe, Thermoelectrics Handbook: Macro to Nano (CRC Press, London, 2006).

    Google Scholar 

  23. S. Wang, G. Tan, W. Xie, G. Zheng, H. Li, J. Yang and X. Tang, J. Mater. Chem. 22, 20943 (2012).

    Article  Google Scholar 

  24. B. Y. Yavorsky, N. Hinsche, I. Mertig and P. Zahn, Phys. Rev. B: Condens. Matter Mater. Phys. 84, 165208 (2011).

    Article  ADS  Google Scholar 

  25. F. D. Rosi, Sol. Stat. Electron. 11, 833 (1968).

    Article  ADS  Google Scholar 

  26. A. M. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling (Infosearch Ltd., London, 1957).

    Google Scholar 

  27. H. J. Goldsmid, Proc. Phys. Soc. B 69, 203 (1956).

    Article  ADS  Google Scholar 

  28. J. R. Sootman, D. Y. Chung and M. G. Kanatzidis, Angew. Chem. Int. Ed. 48, 8616 (2009).

    Article  Google Scholar 

  29. S. Wang, H. Li, R. Lu, G. Zheng and X. Tang, Nanotechnology 24, 285702 (2013).

    Article  Google Scholar 

  30. H. Cailat, A. Borshchevsky and J. P. Fleurial, J. Appl. Phys. 80, 4442 (1996).

    Article  ADS  Google Scholar 

  31. J. Jiang, L. D. Chen, Q. Yao, S. Q. Bai and Q. Wang, Mater. Chem. Phys. 92, 39 (2005).

    Article  Google Scholar 

  32. J. Jiang, L. D. Chen, Q. Yao, S. Q. Bai and Q. Wang, Mater. Sci. Eng. B 117, 334 (2005).

    Article  Google Scholar 

  33. J. Yang, T. Aizawa, A. Yamamoto and T. Ohta, J. Alloys Compd. 312, 326 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il-Ho Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, GE., Kim, IH., Lim, Y.S. et al. Preparation and thermoelectric properties of iodine-doped Bi2Te3-Bi2Se3 solid solutions. Journal of the Korean Physical Society 65, 696–701 (2014). https://doi.org/10.3938/jkps.65.696

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.65.696

Keywords

Navigation