Skip to main content
Log in

Nano-spherical Fe3O4 modified NixSy@SiMPs composite materials improve photoelectrochemical performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

More catalytic active sites and fast interfacial charge transfer rates have been shown to be effective strategies to enhance photocatalytic water decomposition. In this work, a microconical textured silicon wafer was constructed by wet chemical etching. Fe3O4 nanospheres and NixSy (NiS and Ni3S4 complexes) nanoclusters were prepared by solvothermal method, and Fe3O4 and NixSy were deposited on Si micropyramids (denoted as Fe3O4/NiS/Ni3S4@SiMPs) by drop-coating methods. Fe3O4/NiS/Ni3S4@SiMPs exhibited excellent photoelectrochemical properties and good stability at the composite ratio of Fe3O4 to NixSy was 1:5, and the starting potential of the composite was 0.29 V vs.RHE, maximum photohydrogen conversion efficiency was 0.32% (+ 1.21 V vs. RHE), photocurrent density was 0.82 mA cm−2. Fe3O4/NiS/Ni3S4@SiMPs exhibited 42 times higher photocurrent density than NixSy@SiMPs with long-term stability was up to 4 h. The results show that Fe3O4 significantly improved the photoelectrochemical performance of NixSy@SiMPs composites, mainly because that Fe3O4 nanospheres have high conductivity contributing to photogenerated carrier migration, and the heterojunction between semiconductors with different energy levels (Fe3O4, NixSy, Si) effectively inhibited the recombination of electrons and holes. This work provides directions for the preparation and photoelectrochemical properties of monocrystalline silicon-based supported NixSy and Fe3O4 composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author, [Li Zhang], upon reasonable request.

References

  1. J.J. West, S.J. Smith, R.A. Silva, V. Naik, Y. Zhang, Z. Adelman, M.M. Fry, S. Anenberg, L.W. Horowitz, J.-F. Lamarque, Nat. Clim. Change 3, 885–889 (2013)

    Article  CAS  ADS  Google Scholar 

  2. R. van de Krol, Y. Liang, J. Schoonman, J. Mater. Chem. 18, 2311–2320 (2008)

    Article  Google Scholar 

  3. G. Paulraj, P.S. Venkatesh, P. Dharmaraj, S. Gopalakrishnan, K. Jeganathan, Int. J. Hydrogen Energy 45, 1793–1801 (2020)

    Article  CAS  Google Scholar 

  4. S. Guan, X. Fu, Y. Zhang, Z. Peng, Chem. Sci. 9, 1574–1585 (2018)

    Article  CAS  PubMed  Google Scholar 

  5. C. Xue, H. Li, H. An, B. Yang, J. Wei, G. Yang, Acs Catal. 8, 1532–1545 (2018)

    Article  CAS  Google Scholar 

  6. X. Shi, S. Kim, M. Fujitsuka, T. Majima, Appl. Catal. B-Environ. 254, 594–600 (2019)

    Article  CAS  Google Scholar 

  7. P. Pramanik, S. Biswas, J. Solid State Chem. 65, 145–147 (1986)

    Article  CAS  ADS  Google Scholar 

  8. L. Wei, Y. Chen, J. Zhao, Z. Li, Beilstein J. Nanotech. 4, 949–955 (2013)

    Article  CAS  Google Scholar 

  9. A. Ubale, A. Bargal, Mater. Res. Bull. 46, 1000–1010 (2011)

    Article  CAS  Google Scholar 

  10. J. Zhang, S.Z. Qiao, L. Qi, J. Yu, Phys. Chem. Chem. Phys. 15, 12088–12094 (2013)

    Article  CAS  PubMed  Google Scholar 

  11. X. Zhao, J. Bao, Y. Zhou, Y. Zhang, X. Sheng, B. Wu, Y. Wang, C. Zuo, X. Bu, New J. Chem. 46, 5505–5514 (2022)

    Article  CAS  Google Scholar 

  12. Y. Wang, J. Zhao, W. Hou, Y. Xu, Appl. Catal. B-Environ. 310, 121350 (2022)

    Article  CAS  Google Scholar 

  13. J. Chang, S. Zang, Y. Wang, C. Chen, D. Wu, F. Xu, K. Jiang, Z. Bai, Z. Gao, Electrochim. Acta 353, 136501 (2020)

    Article  CAS  Google Scholar 

  14. Z. Yang, B. Cui, Y. Bu, Y. Wang, J. Alloy. Compd. 775, 826–835 (2019)

    Article  CAS  Google Scholar 

  15. L. Zhang, W. Chen, L. Cheng, L. Jiang, X. Deng, J. Yan, H. Yang, J. Mater. Sci. 32, 5176–5185 (2021)

    CAS  Google Scholar 

  16. X. Christodoulou, S.B. Velasquez-Orta, Environ. Sci. Technol. 50, 11234–11242 (2016)

    Article  CAS  PubMed  ADS  Google Scholar 

  17. X. Wang, D. Jiang, C. Jing, X. Liu, K. Li, M. Yu, S. Qi, Y. Zhang, J. Energy Storage. 30, 101554 (2020)

    Article  Google Scholar 

  18. G. Liu, B. Wang, P. Ding, Y. Ye, W. Wei, W. Zhu, L. Xu, J. Xia, H. Li, J. Alloy. Compd. 797, 849–858 (2019)

    Article  CAS  Google Scholar 

  19. M. Mollavali, C. Falamaki, S. Rohani, Int. J. Hydrogen Energy 40, 12239–12252 (2015)

    Article  CAS  Google Scholar 

  20. H. Chen, J. Jiang, L. Zhang, H. Wan, T. Qi, D. Xia, Nanoscale 5, 8879–8883 (2013)

    Article  CAS  PubMed  ADS  Google Scholar 

  21. L. Peng, X. Ji, H. Wan, Y. Ruan, K. Xu, C. Chen, L. Miao, J. Jiang, Electrochim. Acta 182, 361–367 (2015)

    Article  CAS  Google Scholar 

  22. Q. Pan, J. Xie, T. Zhu, G. Cao, X. Zhao, S. Zhang, Inorg. Chem. 53, 3511–3518 (2014)

    Article  CAS  PubMed  Google Scholar 

  23. M.-L. Guo, S.-P. Wan, C.-L. Li, K. Zhang, Rare Met. 41, 3795–3802 (2022)

    Article  CAS  Google Scholar 

  24. L. Acharya, S. Nayak, S.P. Pattnaik, R. Acharya, K. Parida, J. Colloid Interface Sci. 566, 211–223 (2020)

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Z. Zhang, R. Dua, L. Zhang, H. Zhu, H. Zhang, P. Wang, ACS Nano 7, 1709–1717 (2013)

    Article  CAS  PubMed  Google Scholar 

  26. H. Sun, W. Hua, S. Liang, Y. Li, J.-G. Wang, J. Mater. Chem. A 10, 20414–20423 (2022)

    Article  CAS  Google Scholar 

  27. T.W. Hamann, N.S. Lewis, J. Phys. Chem. B 110, 22291–22294 (2006)

    Article  CAS  PubMed  Google Scholar 

  28. H. Sun, W. Hua, S. Liang, Y. Li, J.-G. Wang, J. Colloid Interface Sci. 611, 278–286 (2022)

    Article  CAS  PubMed  ADS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Open Fund Project of Key Laboratory of Fine Petrochemical Catalysis and Separation of Hunan Province of China (No. HNPCCS201901).

Funding

This work was funded by Hunan Provincial Science and Technology Department (Grant No. 414006).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study concept and design. Material preparation, data collection and analysis were carried out by ZZ, WC and XC. The first draft of the manuscript was written by ZZ and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Li Zhang.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Z., Chen, W., Chen, X. et al. Nano-spherical Fe3O4 modified NixSy@SiMPs composite materials improve photoelectrochemical performance. J Mater Sci: Mater Electron 35, 244 (2024). https://doi.org/10.1007/s10854-024-12020-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12020-w

Navigation