Skip to main content
Log in

Magnesium ion conducting PVB-based polymer electrolyte for solid-state magnesium batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polymer electrolytes have attained prominence as a compelling paradigm in the realm of battery applications, heralding a new era of advanced energy storage systems. Considering the advantages and recent advancements, the primary objective of this investigation was directed towards formulating a solid-state polymer electrolyte film for magnesium-ion conducting batteries by employing solution-cast method with Polyvinyl Butyral (PVB) polymer doped with MgCl2 6H2O. The incorporation of MgCl2 6H2O into the PVB matrix induces discernible changes in structural characteristics, significant modification of the electronic band structure, and thermal stability in the resulting polymer electrolyte films. The optimized composition PVB:MgCl2 6H2O (70:30) demonstrates a moderate ionic conductivity of 1.8983 × 10−6 S/cm at ambient temperature, highlighting its potential for efficient ion conduction and charge transport. Electrochemical cell analysis under a constant 100 kΩ load reveals an open circuit voltage of 2.3 V and a short circuit current of 1.3 µA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data supporting the results presented in this manuscript will be made available upon request. Please contact the corresponding author to request access to the data. We are committed to facilitating the replication and validation of our findings by providing access to the data. In cases where sharing of data could compromise study participant privacy or is restricted by ethical, legal, or institutional regulations, we may need to implement additional safeguards or restrictions on data access. The corresponding author will work with requestors to ensure that data access is granted while respecting these limitations.

References

  1. S.R. Yousefi, D. Ghanbari, N.M. Salavati, Hydrothermal synthesis of nickel hydroxide nanostructures and flame retardant polyvinyl alcohol and cellulose acetate nanocomposites. J. Nanostruct. 6(1), 80–85 (2016)

    CAS  Google Scholar 

  2. D. Golodnitsky, E. Strauss, E. Peled, S. Greenbaum, Review-on order and disorder in polymer electrolytes. J. Electrochem. Soc. 162(14), A2551–A2566 (2015)

    Article  CAS  Google Scholar 

  3. J.C. Hoepfner, M.R. Loos, S.H. Pezzin, Evaluation of thermomechanical properties of polyvinyl butyral nanocomposites reinforced with graphene nanoplatelets synthesized by in situ polymerization. J. Appl. Polym. Sci. 135(17), 46157 (2018)

    Article  Google Scholar 

  4. K. Nakane, T. Kurita, T. Ogihara, N. Ogata, Properties of poly (vinyl butyral)/TiO2 nanocomposites formed by sol–gel process. Compos. B Eng. 35, 219–222 (2004)

    Article  Google Scholar 

  5. R.M. Omer, E.T.B. Al-Tikrity, R.N. Abed, M. Kadhom, A.H. Jawad, E. Yousif, Electrical conductivity and surface morphology of PVB films doped with different nanoparticles. Prog. Color Colorants Coat 15, 191–202 (2022)

    CAS  Google Scholar 

  6. R. Reddy, C. Srinivas, N. Narsimlu, Morphology and optical absorption studies of RGO reinforced PVB nanocomposite films. Mater. Today: Proc. 67, 912–916 (2022)

    Google Scholar 

  7. L.J. Chen, J.D. Liao, S.J. Lin, Y.J. Chuang, Y.S. Fu, Synthesis and characterization of PVB/silica nanofibers by electrospinning process. Polymer 50(15), 3516–3521 (2009)

    Article  CAS  Google Scholar 

  8. C. Christian, A. Bendaoud, C. Pillon, O. Olabisi, K. Adewale, Handbook of thermoplastics. Polyvinyl Butyral 2, 89–137 (2015)

    Google Scholar 

  9. F. Lian, Y. Wen, Y. Ren, H. Guan, A novel PVB based polymer membrane and its application in gel polymer electrolytes for lithium-ion batteries. J. Membr. Sci. 456, 44–48 (2014)

    Article  Google Scholar 

  10. C.Y. Tsai, K.J. Peng, C.F. Wang, Y.L. Liu, Creation of lithium–ion conducting channels in gel polymer electrolyte through non-solvent induced phase separation for high—rate lithium–ion batteries. ACS Sustain. Chem. Eng. 8(5), 2138–2146 (2019)

    Article  Google Scholar 

  11. Z. Xu, W. Li, Z. Chen, D. Wang, T. Feng, H. Potapenko, M. Wu, Chemically modified polyvinyl butyral polymer membrane as a gel polymer electrolyte for lithium ion battery applications. Macromol. Mat. Eng. 304(1), 1800477 (2019)

    Article  Google Scholar 

  12. C.Y. Wen, Y.C. Chen, C.M. Wang, C.H. Peng, S.Y. Lin, K.Y. Huang, Properties of a gel polymer electrolyte based on lithium salt with poly (vinyl butyral). Ionics 24, 1385–1389 (2018)

    Article  CAS  Google Scholar 

  13. S.K. Shahenoor Basha, G. Sunita Sundari, K. Vijay Kumar, M.C. Rao, Optical and dielectric properties of PVP based composite polymer electrolyte Films. Polym. Sci. Ser. - A 59, 554–565 (2017)

    Article  CAS  Google Scholar 

  14. K.J. Chen, F.Y. Hung, Y.T. He, Charge—Discharge properties of sputtered Mg anode in flexible All—solid state Mg–ion batteries. ACS Omega 7(47), 43161–43168 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. A. Arya, A.L. Sharma, Polymer electrolytes for lithium-ion batteries: a critical study. Ionics 23(3), 497–540 (2017)

    Article  CAS  Google Scholar 

  16. P. Kumar, N. Khan, D. Kumar, Polyvinyl butyral (PVB) versatile template for designing nanocomposite/composite materials: a review. Green Chem. Technol. Lett. 2(4), 185–194 (2016)

    Article  Google Scholar 

  17. O. Olagoke, K. Adewale (eds), Handbook of Thermoplastics (CRC Press) vol. 41 (2016)

  18. P. Scherrer, Bestimmung der gross and inneren struktur von kolloidteilchen mittels Rontagenstrahlen. Nachr. Ges. Wiss. Gottingen 2, 98 (1918)

    Google Scholar 

  19. J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Cryst. 11, 102 (1978)

    Article  CAS  ADS  Google Scholar 

  20. V. Uvarov, I. Popov, Metrological characterization of x-ray diffraction methods for determination of crystallite size in nano-scale materials. Mater. Charac. 85, 111 (2013)

    Article  CAS  Google Scholar 

  21. A. Kumar, D. Saikia, F. Singh, D.K. Avasthi, Ionic conduction in 70 MeV C5+ ion-irradiated (PVDF–HFP)–(PC+DEC)–LiCF3SO3 gel polymer electrolyte system. Solid State Ion. 176, 1585–1590 (2005)

    Article  CAS  Google Scholar 

  22. P.W. Davis, T.S. Shilliday, some optical properties of cadmium telluride. Phys. Rev. 118(4), 1020 (1960)

    Article  CAS  ADS  Google Scholar 

  23. S.B. Aziz, T.J. Woo, M.F.Z. Kadir, H.M. Ahmed, A conceptual review on polymer electrolytes and ion transport models. J. Sci: Adv. Mater. Dev. 3, 1–17 (2018)

    Google Scholar 

  24. S.R. Yousefi, M. Masjedi-Arani, M.S. Morassaei, N. Salavati-Niasari, H. Moayedi, Hydrothermal synthesis of DyMn2O5/ Ba3Mn2O8. Int. J. Hydrog. Energy 44(43), 24005–24016 (2019)

    Article  CAS  Google Scholar 

  25. V.B. Ivanova, A.A. Zavodchikova, E.I. Popova, O.L. Lazareva, O.A. Belova, I.A. Kryuchkov, E.V. Bykov, Accelerated testing of thermo-oxidative degradation of polyvinyl butyral. Thermochim. Acta 589, 70–75 (2014)

    Article  Google Scholar 

  26. S. Ramesh, A.H. Yahaya, A.K. Arof, Dielectric behaviour of PVC-based polymer electrolytes. Solid State Ion. 152, 291–294 (2002)

    Article  Google Scholar 

  27. J.M. Hadi, S.B. Aziz, S.R. Saeed, M.A. Brza, R.T. Abdulwahid et al., Investigation of ion transport parameters and electrochemical performance of plasticized biocompatible chitosan-based proton conducting polymer composite electrolytes. Membranes 10(11), 363 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. M.A. Ramlli, M.I.N. Isa, Structural and ionic transport properties of protonic conducting solid biopolymer electrolytes based on carboxymethyl cellulose doped ammonium Fluoride. J. Phys. Chem. B 120(44), 11567–11573 (2016)

    Article  CAS  PubMed  Google Scholar 

  29. S.R. Yousefi, A. Sobhani, M.N. Salavati, A new nanocomposite superionic system (CdHgI4/HgI2): synthesis, characterization and experimental investigation. Adv. Powder Technol. 28(4), 1258–1262 (2017)

    Article  CAS  Google Scholar 

  30. Y. Saito, Ion transport in solid medium—Evaluation of ionic mobility for design of ion transport pathways in separator and gel electrolyte. Membranes 11(4), 277 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. J.B. Wagner, C.J. Wagner, Chem. Rev. 20, 1597 (1957)

    ADS  Google Scholar 

  32. S.K. Shahenoor Basha, G. Sunita Sundari, K. Vijay Kumar, M.C. Rao, Optical and dielectric Properties of PVP based composite polymer electrolyte films. Polym. Sci. Ser- A 59, 554–565 (2017)

    Article  CAS  Google Scholar 

  33. P.B. Bhargav, V.M. Mohan, A.K. Sharma, V.N. Rao, Investigations on electrical properties of (PVA: NaF) polymer electrolytes for electrochemical cell applications. Curr. Appl. Phys. 9(1), 165–171 (2009)

    Article  ADS  Google Scholar 

  34. K.J. Chen, F.Y. Hung, Y.T. He, Charge—discharge properties of sputtered Mg anode in flexible all solid-state Mg–ion batteries. ACS Omega 7(47), 43161–43168 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors K. Nivetha and Dr. K. Vijaya Kumar thank the Management of DSI Bangalore for constant support and encouragement. We sincerely thank Dr. Prema Chandra Sagar, Pro-Chancellor & CEO of DSI,Vice-chancellor, Registrar, Dean of SoE, and Dean R&D of Dayananda Sagar University for their utmost cooperation and assistance. The author Dr. K. Venkataratnam Kamma especially thank Dean R&D, HOD, Dept. of Physics MNIT-Jaipur who gave moral support and encouragement in doing the research work.

Funding

The authors declare that no funding was received for the conduct of this research.

Author information

Authors and Affiliations

Authors

Contributions

KN: Data curation, formal analysis, writing, and visualization. KVK: Conceptualization, writing—review and editing, and supervision. NKJ: Investigation, KVK: Investigation.

Corresponding author

Correspondence to K. Vijaya Kumar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nivetha, K., Vijaya Kumar, K., Krishna Jyothi, N. et al. Magnesium ion conducting PVB-based polymer electrolyte for solid-state magnesium batteries. J Mater Sci: Mater Electron 35, 277 (2024). https://doi.org/10.1007/s10854-024-12017-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12017-5

Navigation