Skip to main content
Log in

Enhanced breakdown strength and dielectric loss of Ca1−3x/2EuxCu3Ti4O12 ceramics prepared by polymer pyrolysis

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The CaCu3Ti4O12 (CCTO) ceramic is characterized by high dielectric constant, but its elevated dielectric loss (tanδ) and low breakdown field strength (Eb) limit its practical applications in small electronic devices. Therefore, Ca1−3x/2EuxCu3Ti4O12 (x = 0, 0.2, 0.4, and 0.6) samples were prepared through a combined strategy of substituting with rare earth element and polymer pyrolysis method to improve the tanδ and Eb. XRD analysis revealed that main phase of CCTO was formed in all samples, and Eu3+ ions were incorporated into the lattice. These results suggest that the low concentrations of Eu facilitate grain growth. However, as the concentration increases, it begins to have an inhibitory effect on grain growth, consequently resulting in an elevated grain boundary density. Moreover, the results demonstrated that the addition of Eu enhanced the Eb, reduced the tanδ, and improved the temperature stability of the CCTO ceramics. Interestingly, impedance analysis reveals a notable enhancement in grain boundary resistance. Notably, the Ca0.4Eu0.4Cu3Ti4O12 sample demonstrated an exceptionally high grain boundary resistance of 6.62 × 1010 Ω cm, surpassing that of pure CCTO by over 100-fold. Ca1−3x/2EuxCu3Ti4O12 ceramics possess low loss and high breakdown performance, making them promising materials in capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J. Solid State Chem. 151, 323–325 (2000). https://doi.org/10.1006/jssc.2000.8703

    Article  CAS  ADS  Google Scholar 

  2. J.-W. Lee, J.-H. Koh, Grain size effects on the dielectric properties of CaCu3Ti4O12 ceramics for supercapacitor applications. Ceram. Int. 41, 10442–10447 (2015). https://doi.org/10.1016/j.ceramint.2015.04.109

    Article  CAS  Google Scholar 

  3. P. Mao, J. Wang, S. Liu, L. Zhang, Y. Zhao, L. He, Grain size effect on the dielectric and non-ohmic properties of CaCu3Ti4O12 ceramics prepared by the sol-gel process. J. Alloys Compd. 778, 625–632 (2019). https://doi.org/10.1016/j.jallcom.2018.11.200

    Article  CAS  Google Scholar 

  4. D.P. Samarakoon, N. Govindaraju, R.N. Singh, Influence of atmospheres on the dielectric properties of calcium copper titanate ceramics. J. Am. Ceram. Soc. 102, 5271–5283 (2019). https://doi.org/10.1111/jace.16381

    Article  CAS  Google Scholar 

  5. C. Xu, X. Zhao, L. Ren, J. Sun, L. Yang, J. Guo, R. Liao, Enhanced electrical properties of CaCu3Ti4O12 ceramics by spark plasma sintering: role of Zn and Al co-doping. J. Alloys Compd. 792, 1079–1087 (2019). https://doi.org/10.1016/j.jallcom.2019.04.131

    Article  CAS  Google Scholar 

  6. G. Evangeline, T.R. Annamalai, P. Ctibor, Effect of europium addition on the microstructure and dielectric properties of CCTO ceramic prepared using conventional and microwave sintering. Molecules (2023). https://doi.org/10.3390/molecules28041649

    Article  Google Scholar 

  7. J. Zhang, W. Lu, R. Hao, S. Guo, Z. Lei, Y. Li, M. Tian, Microstructure and dielectric properties of CaCu3Ti4O12 ceramics with high breakdown field strength prepared via polymer pyrolysis. Mater. Res. Bull. (2022). https://doi.org/10.1016/j.materresbull.2022.111946

    Article  Google Scholar 

  8. E. Swatsitang, T. Putjuso, Improved non-ohmic and dielectric properties of Cr3+ doped CaCu3Ti4O12 ceramics prepared by a polymer pyrolysis solution route. J. Eur. Ceram. Soc. 38, 4994–5001 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.07.047

    Article  CAS  Google Scholar 

  9. K. Prompa, E. Swatsitang, C. Saiyasombat, T. Putjuso, Very high performance dielectric and non-ohmics properties of CaCu3Ti4.2O12 ceramics for X8R capacitors. Ceram. Int. 44, 13267–13277 (2018). https://doi.org/10.1016/j.ceramint.2018.04.156

    Article  CAS  Google Scholar 

  10. K. Prompa, E. Swatsitang, T. Putjuso, Ultra-stable X9R type CaCu3−xZnxTi4.1O12 ceramics. Ceram. Int. 44, 20739–20748 (2018). https://doi.org/10.1016/j.ceramint.2018.08.072

    Article  CAS  Google Scholar 

  11. J. Boonlakhorn, P. Kidkhunthod, B. Putasaeng, P. Thongbai, Significantly improved non-ohmic and giant dielectric properties of CaCu3−xZnxTi4O12 ceramics by enhancing grain boundary response. Ceram. Int. 43, 2705–2711 (2017). https://doi.org/10.1016/j.ceramint.2016.11.089

    Article  CAS  Google Scholar 

  12. E. Swatsitang, S. Putjuso, S. Nijpanich, T. Putjuso, Improvement of dielectric properties and thermal stability of CaCu3Ti4.2O12 ceramics for X8R type capacitors via Co2+ doping. Results Phys. (2023). https://doi.org/10.1016/j.rinp.2023.107012

    Article  Google Scholar 

  13. E. Swatsitang, P. Kumnorkaew, T. Putjuso, Thermal stability improvement of dielectric properties and non-ohmic characteristic of CaCu3+xTi4O12 ceramics via a Cu-nonstoichiometric approach. Ceram. Int. 47, 24149–24162 (2021). https://doi.org/10.1016/j.ceramint.2021.05.126

    Article  CAS  Google Scholar 

  14. J. Zhang, S. Guo, W. Lu, Z. Lei, Y. Li, M. Tian, Differences between La substitution and doping strategies in dielectric properties of CaCu3Ti4O12 ceramics with low loss. J. Mater. Sci.: Mater. Electron. 33, 7011–7022 (2022). https://doi.org/10.1007/s10854-022-07881-y

    Article  CAS  Google Scholar 

  15. E. Swatsitang, K. Prompa, T. Putjuso, A novel strategy to improve the thermal stability of dielectric properties and reduce the dielectric loss tangent of Ca1−1.5xPrxCu3Ti4O12/TiO2 ceramics. Ceram. Int. 45, 14733–14741 (2019). https://doi.org/10.1016/j.ceramint.2019.04.199

    Article  CAS  Google Scholar 

  16. M. Li, Y. Shen, C.X. Li, Study of the dielectric properties of ACu3Ti4O12 (A = Eu2/3, Tb2/3, and Na1/2Eu1/2). Powder Diffr. 34, 345–351 (2019). https://doi.org/10.1017/s0885715619000769

    Article  ADS  Google Scholar 

  17. J. Boonlakhorn, P. Thongbai, Enhanced non-ohmic properties and giant dielectric response of (Sm + Zn) co-doped CaCu3Ti4O12 ceramics. Ceram. Int. 43, 12736–12741 (2017). https://doi.org/10.1016/j.ceramint.2017.06.159

    Article  CAS  Google Scholar 

  18. P. Thongbai, J. Boonlakhorn, B. Putasaeng, T. Yamwong, S. Maensiri, H. Fan, Extremely enhanced nonlinear current–voltage properties of Tb-doped CaCu3Ti4O12 ceramics. J. Am. Ceram. Soc. 96, 379–381 (2013). https://doi.org/10.1111/jace.12157

    Article  CAS  Google Scholar 

  19. J. Boonlakhorn, P. Thongbai, B. Putasaeng, T. Yamwong, S. Maensiri, Very high-performance dielectric properties of Ca1–3x/2YbxCu3Ti4O12 ceramics. J. Alloys Compd. 612, 103–109 (2014). https://doi.org/10.1016/j.jallcom.2014.05.143

    Article  CAS  Google Scholar 

  20. J.-W. Liu, D.-Y. Lu, X.-Y. Yu, Q.-L. Liu, Q. Tao, H. Change, P.-W. Zhu, Dielectric properties of Eu-doped CaCu3Ti4O12 with different compensation mechanisms. Acta Metall. Sin. (Engl. Lett.) 30, 97–103 (2016). https://doi.org/10.1007/s40195-016-0522-y

    Article  CAS  Google Scholar 

  21. M. Li, Q. Liu, C.X. Li, Study of the dielectric responses of Eu-doped CaCu3Ti4O12. J. Alloys Compd. 699, 278–282 (2017). https://doi.org/10.1016/j.jallcom.2016.12.422

    Article  CAS  Google Scholar 

  22. C. Mu, H. Zhang, Y. Liu, Y. Song, P. Liu, Rare earth doped CaCu3Ti4O12 electronic ceramics for high frequency applications. J. Rare Earths 28, 43–47 (2010). https://doi.org/10.1016/s1002-0721(09)60048-x

    Article  CAS  Google Scholar 

  23. T. Li, Y. Xue, Z. Chen, F. Chang, Dielectric characteristics and positron annihilation study of Eu2O3-doped CaCu3Ti4O12 ceramics. Mater. Sci. Eng. B 158, 58–62 (2009). https://doi.org/10.1016/j.mseb.2009.01.002

    Article  CAS  Google Scholar 

  24. T. Li, Z. Chen, F. Chang, J. Hao, J. Zhang, The effect of Eu2O3 doping on CaCu3Ti4O12 varistor properties. J. Alloys Compd. 484, 718–722 (2009). https://doi.org/10.1016/j.jallcom.2009.05.025

    Article  CAS  Google Scholar 

  25. E. Swatsitang, T. Putjuso, Very low loss tangent, high dielectric and non-ohmic properties of Ca1–1.5xPrxCu3Ti4O12 ceramics prepared by the sol–gel process. J. Mater. Sci.: Mater. Electron. 28, 18966–18976 (2017). https://doi.org/10.1007/s10854-017-7850-1

    Article  CAS  Google Scholar 

  26. L. Liu, L. Fang, Y. Huang, Y. Li, D. Shi, S. Zheng, S. Wu, C. Hu, Dielectric and nonlinear current–voltage characteristics of rare-earth doped CaCu3Ti4O12 ceramics. J. Appl. Phys. (2011). https://doi.org/10.1063/1.3658258

    Article  PubMed  PubMed Central  Google Scholar 

  27. P.R. Bueno, J.A. Varela, E. Longo, SnO2, ZnO and related polycrystalline compound semiconductors: an overview and review on the voltage-dependent resistance (non-ohmic) feature. J. Eur. Ceram. Soc. 28, 505–529 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.06.011

    Article  CAS  Google Scholar 

  28. E. Swatsitang, S. Putjuso, S. Nijpanich, T. Putjuso, Modification of Cu-deficient CaCu2.8Ti4O12 ceramics via Mg2+ substitution at Cu sites for improved dielectric properties and thermal stability. J. Alloys Compd. (2022). https://doi.org/10.1016/j.jallcom.2022.163643

    Article  Google Scholar 

  29. E. Swatsitang, K. Prompa, T. Putjuso, Temperature stability of the dielectric properties of Zr4+-doped CaCu3Ti4.2O12 ceramics for X9R capacitor applications. J. Alloys Compd. 789, 231–239 (2019). https://doi.org/10.1016/j.jallcom.2019.03.111

    Article  CAS  Google Scholar 

  30. S.G. Infantiya, A. Aslinjensipriya, R.S. Reena, S. Deepapriya, J.D. Rodney, S.J. Das, C.J. Raj, Calcium copper titanate a perovskite oxide structure: effect of fabrication techniques and doping on electrical properties—a review. J. Mater. Sci.: Mater. Electron. 33, 15992–16028 (2022). https://doi.org/10.1007/s10854-022-08511-3

    Article  CAS  Google Scholar 

  31. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 32, 751–767 (1976). https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  32. R.M. Hill, L.A. Dissado, Debye and non-debye relaxation. J. Phys. C 18, 3829–3836 (1985). https://doi.org/10.1088/0022-3719/18/19/021

    Article  CAS  ADS  Google Scholar 

  33. J. Tang, Y. Teng, Y. Chen, X. Zhao, S. Wang, W. Wang, R. Ahuja, Reduction of the sintering temperature and dielectric loss of the CCTO ceramic by doping tellurite glass. Ceram. Int. 47, 10006–10012 (2021). https://doi.org/10.1016/j.ceramint.2020.12.146

    Article  CAS  Google Scholar 

  34. D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, CaCu3Ti4O12: one-step internal barrier layer capacitor. Appl. Phys. Lett. 80, 2153–2155 (2002). https://doi.org/10.1063/1.1463211

    Article  CAS  ADS  Google Scholar 

  35. L. Lin, Y. Liu, J. Zhang, Z. Li, Z. Lei, Y. Li, M. Tian, Enhancement of breakdown electric field and dielectric properties of CaCu3Ti4O12 ceramics by Sr doping. Mater. Chem. Phys. (2020). https://doi.org/10.1016/j.matchemphys.2020.122722

    Article  Google Scholar 

  36. W. Hao, P. Xu, P. Han, M. Wang, Optimize the dielectric properties of CaCu3Ti4O12 ceramics by adjusting the conductivities of grains and grain boundaries. J. Eur. Ceram. Soc. 43, 986–992 (2023). https://doi.org/10.1016/j.jeurceramsoc.2022.11.022

    Article  CAS  Google Scholar 

  37. S.-Y. Chung, I.-D. Kim, S.-J.L. Kang, Strong nonlinear current–voltage behaviour in perovskite-derivative calcium copper titanate. Nat. Mater. 3, 774–778 (2004). https://doi.org/10.1038/nmat1238

    Article  CAS  PubMed  ADS  Google Scholar 

  38. M. Li, Z. Shen, M. Nygren, A. Feteira, D.C. Sinclair, A.R. West, Origin(s) of the apparent high permittivity in CaCu3Ti4O12 ceramics: clarification on the contributions from internal barrier layer capacitor and sample-electrode contact effects. J. Appl. Phys. (2009). https://doi.org/10.1063/1.3253743

    Article  PubMed  PubMed Central  Google Scholar 

  39. Y. Yan, L. Jin, L. Feng, G. Cao, Decrease of dielectric loss in giant dielectric constant CaCu3Ti4O12 ceramics by adding CaTiO3. Mater. Sci. Eng. B 130, 146–150 (2006). https://doi.org/10.1016/j.mseb.2006.02.060

    Article  CAS  Google Scholar 

  40. P. Lunkenheimer, R. Fichtl, S.G. Ebbinghaus, A. Loidl, Nonintrinsic origin of the colossal dielectric constants in CaCu3Ti4O12. Phys. Rev. B (2004). https://doi.org/10.1103/PhysRevB.70.172102

    Article  Google Scholar 

  41. S. Sonia, I. Jose Annsi, P. Suresh Kumar, D. Mangalaraj, C. Viswanathan, N. Ponpandian, Hydrothermal synthesis of novel Zn doped CuO nanoflowers as an efficient photodegradation material for textile dyes. Mater. Lett. 144, 127–130 (2015). https://doi.org/10.1016/j.matlet.2015.01.026

    Article  CAS  Google Scholar 

  42. L. Li, J. Yan, T. Wang, Z.-J. Zhao, J. Zhang, J. Gong, N. Guan, Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nat. Commun. (2015). https://doi.org/10.1038/ncomms6881

    Article  PubMed  PubMed Central  Google Scholar 

  43. W. Li, T. Zhang, S. Liu, Z. Lu, R. Xiong, Decrease in the dielectric loss of CaCu3Ti4O12 at high frequency by Ru doping. Ceram. Int. 43, 4366–4371 (2017). https://doi.org/10.1016/j.ceramint.2016.12.082

    Article  CAS  Google Scholar 

  44. L.-F. Yuan, T. Zhang, D.-D. Han, Effects of multiple cations and sintering temperature on microstructure and dielectric properties in Na1/2Ln1/2Cu3Ti4O12 (Ln = Sm and Eu) ceramic materials. Sci. Rep. (2023). https://doi.org/10.1038/s41598-023-42610-3

    Article  PubMed  PubMed Central  Google Scholar 

  45. J. Jumpatam, J. Boonlakhorn, B. Putasaeng, N. Chanlek, P. Thongbai, Preparation, characterizations, dielectric properties and nonlinear behavior of (Na+1/3Ca2+1/3Yb3+1/3)Cu3Ti4O12 ceramics. Solid State Sci. (2022). https://doi.org/10.1016/j.solidstatesciences.2022.106994

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51701136 and 51977137), Shanxi Province Natural Science Foundation (Grant Nos. 201901D211044, 202103021224115, and 201901D211043).

Funding

This study was supported by National Natural Science Foundation of China (Grant Nos. 51701136 and 51977137), Shanxi Province Natural Science Foundation (Grant Nos. 201901D211044, 202103021224115, and 201901D211043), Shanxi Province “1331 Project” Improve Quality and Efficiency Construction Plan (Grant No. JinJiaoKe[2021] No. 4).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by TD and PL. The first draft of the manuscript was written by JZ and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jianhua Zhang.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Deng, T., Li, P. et al. Enhanced breakdown strength and dielectric loss of Ca1−3x/2EuxCu3Ti4O12 ceramics prepared by polymer pyrolysis. J Mater Sci: Mater Electron 35, 246 (2024). https://doi.org/10.1007/s10854-024-12001-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12001-z

Navigation