Skip to main content
Log in

Investigation of structural and magnetic properties of Sn-substituted NiZn spinel ferrites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, Sn-replaced Ni0.6Zn0.4SnxFe2-xO4 (x = 0 ~ 0.2) ferrites were prepared by solid-phase reaction method and their properties were studied. It is beneficial to characterize the crystal structure by X-ray diffraction, and the microstructure of the sample can be observed by scanning electron microscope. The magnetic energy of the sample is measured using the BH analyzer. The experimental results show that the substitution of Sn is not to change the phase and microstructure of ferrite, but the valence state of the metal ion is adjusted. In addition, Sn substitution effectively reduces the eddy current loss of the sample. When x = 0.05, the eddy loss of the sample decreased by 31%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. E. Hema, A. Manikandan, P.S.A.B.R. KarthikaAntonyVenkatraman, A novel synthesis of zn2+-doped cofe2o4 spinelnanoparticles: structural morphological, opto-magnetic and catalytic properties. J. Supercond. Nov. Magn. 28, 2539–2552 (2015). https://doi.org/10.1007/s10948-015-3054-1

    Article  CAS  Google Scholar 

  2. A. Bouhemadou, D. Allali, S. Bin-Omran, E.M. Al Safi, R. Khenata, Y. Al-Douri, Elastic and thermodynamic properties of the SiB2O4(B=Mg, Zn and Cd) cubic spinels: An ab initio FP-LAPW study. Mater. Sci. in Semicond. Process. 38, 192–202 (2015). https://doi.org/10.1016/j.mssp.2015.04.021

    Article  CAS  Google Scholar 

  3. G. Padmapriya, A. Manikandan, V. Krishnasamy, S.K. Jaganathan, S.A. Antony, Spinel NixZn1-xFe2O4 (0.0 < x < 1.0) nano-photocatalysts: synthesis, characterization and photocatalytic degradation of methylene blue dye. J. Mol. Structure. (2016). https://doi.org/10.1016/j.molstruc.2016.04.049

    Article  Google Scholar 

  4. A.A. El-Fadla, A.M. Hassan, M.H. Mahmouda, T. Tatarchuk, I.P. Yaremiy, A.M. Gismelssed, M.A. Ahmed, Synthesis and magnetic properties of spinel Zn 1–x Ni x Fe2 O4 (0.0 ≤ x ≤ 1.0) nanoparticles synthesized by microwave combustion method. J. Magne. Magn. Mater. 471, 192–199 (2019). https://doi.org/10.1016/j.jmmm.2018.09.074

    Article  CAS  ADS  Google Scholar 

  5. J.L. Mattei, E.L. Guen, A. Chevalier, A.C. Tarot, Experimental determination of magnetocrystalline anisotropy constants and saturation magnetostriction constants of NiZn and NiZnCo ferrites intended to be used for antennas miniaturization. J. Magn. Magn. Mater. 374, 762–768 (2015). https://doi.org/10.1016/j.jmmm.2014.09.026

    Article  CAS  ADS  Google Scholar 

  6. M.H. Shams, A.S.H. Mudsainiyan, M.H. Yousefi, J.V. Valı´cˇekSˇ epela´k, Effect of Mg2+ and Ti4+ dopants on structural, magnetic and high-frequency ferromagnetic properties ofbarium hexaferrites. J. Magn. Magn. Mater. 399, 10–18 (2016). https://doi.org/10.1016/j.jmmm.2015.08.099

    Article  CAS  ADS  Google Scholar 

  7. J. Sla´ma, A. Gruskova´, M. Usˇa´kova´, E. Usˇa´k, R. Dosoudil, Contribution to analysis of Cu-substituted NiZn ferrites. J. Magn. Magn. Mater. 321(19), 3346–3351 (2009). https://doi.org/10.1016/j.jmmm.2009.06.024

    Article  CAS  ADS  Google Scholar 

  8. A. Manikandan, M. Durka, K. Seevakan, S.A. Antony, A novel one-pot combustion synthesis and opto-magnetic properties ofmagnetically separable spinel mnxmg1−xfe2o4(0.0 ≤ x ≤ 0.5) nanophotocatalysts. J. Supercond. Nov. Magn. 28, 1405–1416 (2015). https://doi.org/10.1007/s10948-014-2864-x

    Article  CAS  Google Scholar 

  9. G. Dixit, J.P. Singh, R.C. Srivastava, H.M. Agrawal, Structural optical and magnetic studies of Ce doped NiFe2O4 nanoparticles. J. Magn. Magn. Mater. 345, 65–71 (2013). https://doi.org/10.1016/j.jmmm.2013.05.060

    Article  CAS  ADS  Google Scholar 

  10. S.E. Shirsath, B.G. Toksha, R.H. Kadam, S.M. Patange, D.R. Mane, G.S. Jangam, A. Ghasemi, Doping effect of Mn2+ on the magnetic behavior in Ni–Zn ferrite nanoparticles prepared by sol–gel auto-combustion. J. Phys. Chem. Solids 71(12), 1669–1675 (2010). https://doi.org/10.1016/j.jpcs.2010.08.016

    Article  CAS  ADS  Google Scholar 

  11. V.C. Pegorettia, P.R. Couceirob, C.M. Goncalves, F.L. Maria, J.D. de FátimaFabris, Preparation and characterization of tin-doped spinel ferrite. J. Alloys. Compounds. 505, 125–129 (2010). https://doi.org/10.1016/j.jallcom.2010.06.058

    Article  CAS  Google Scholar 

  12. A.P. Amaliya, S. Anand, S. Pauline, Investigation on structural, electrical and magnetic properties of titanium substituted cobalt ferrite nanocrystallites. J. Magn. Magn. Mater. 467, 14–28 (2018). https://doi.org/10.1016/j.jmmm.2018.07.058

    Article  CAS  ADS  Google Scholar 

  13. M.H. Abdellatif, G.M. El-Komy, A.A. Azab, Magnetic characterization of rare earth doped spinel ferrite. J. Magn. Magn. Mater. 442, 445–452 (2017). https://doi.org/10.1016/j.jmmm.2017.07.020

    Article  CAS  ADS  Google Scholar 

  14. L. Avazpoura, M.R. Toroghinejada, H. Shokrollahi, Enhanced magneto-optical Kerr effect in rare earth substituted nanostructured cobalt ferrite thin film prepared by sol–gel method. Appl. Surf. Sci. 387, 869–874 (2016). https://doi.org/10.1016/j.apsusc.2016.06.168

    Article  CAS  ADS  Google Scholar 

  15. A.R. Aakasha, D. Dasb, S. Mukherjeec, Effect of doping of chromium ions on the structural and magnetic properties of nickel ferrite. Ceram. Int. 42, 7742–7747 (2016). https://doi.org/10.1016/j.ceramint.2016.01.188

    Article  CAS  Google Scholar 

  16. M.K. Anupama, B. Rudraswamy, N. Dhananjaya, Investigation on impedance response and dielectric relaxation of Ni-Zn ferrites prepared by self-combustion technique. J. Alloys Compd. 706, 554–561 (2017). https://doi.org/10.1016/j.jallcom.2017.02.241

    Article  CAS  Google Scholar 

  17. M. Jalaly, M.H. Enayati, P. Kameli, F. Karimzadeh, Effect of composition on structural and magnetic properties of nanocrystalline ball milled Ni1–xZnxFe2O4 ferrite. Physica B 405(2), 507–512 (2010). https://doi.org/10.1016/j.matchemphys.2009.03.011

    Article  CAS  ADS  Google Scholar 

  18. Y. Li, X. Liu, X. Kan, S. Feng, Q. Lv, J. Huang, J. Zhao, J. Hu, Investigation of structural and magnetic propertiesof Cu-substituted NiZn spinel ferrites. J. Mater. Sci. Mater. Electron. 31, 17133–17142 (2020). https://doi.org/10.1007/s10854-020-04273-y

    Article  CAS  Google Scholar 

  19. M. Sundararajan, M. Sukumar, C.S. Dash, A. Sutha, S. Suresh, M. Ubaidullah, A.M. Al-Enizi, M.K. Raza, D. Kumar, A comparative study on NiFe2O4 and ZnFe2O4 spinel nanoparticles: structural, surface chemistry, optical, morphology and magnetic studies. Physica B 644, 414232 (2022). https://doi.org/10.1016/j.physb.2022.414232

    Article  CAS  Google Scholar 

  20. P. Priyadharsini, A. Pradeep, P.S. Rao, G. Chandrasekaran, Structural, spectroscopic and magnetic study of nanocrystalline Ni–Zn ferrites. Mater. Chem. Phys. 116(1), 207–213 (2009). https://doi.org/10.1016/j.matchemphys.2009.03.011

    Article  CAS  Google Scholar 

  21. J. Hu, X. Liu, X. Kan, S. Feng, C. Liu, Y. Yang, Q. Lv, Synthesis, analysis and characterization of Co substituted NiZnTi spinel ferrite. J. Alloys. Compounds. 828, 154181 (2020). https://doi.org/10.1016/j.jallcom.2020.154181

    Article  CAS  Google Scholar 

  22. N. Singh, A. Agarwal, S. Sanghi, P. Singh, Effect of magnesium substitution on dielectric and magnetic properties of Ni-Zn ferrite. Phys. B 406, 687–692 (2011). https://doi.org/10.1016/j.physb.2010.11.087

    Article  CAS  ADS  Google Scholar 

  23. T.A. Taha, S. Elrabaie, M.T. Attia, Green synthesis, structural, magnetic, and dielectric characterization of NiZnFe2O4/C nanocomposite. J. Mater. Sci.-Mater. Electron. 29, 18493–18501 (2018). https://doi.org/10.1007/s10854-018-9965-4

    Article  CAS  Google Scholar 

  24. A.G. Abraham, A. Manikandan, E. Manikandan, S. Vadivel, S.K. Jaganathan, A. Baykal, P.S. Renganathan, Enhanced magneto-optical and photo-catalytic properties of transition metal cobalt (Co2+ ions) doped spinel MgFe2O4 ferrite nanocomposites. J. Magn. Magn. Mater. 452, 380–388 (2018). https://doi.org/10.1016/j.jmmm.2018.01.001

    Article  CAS  ADS  Google Scholar 

  25. G. Mathubala, A. Manikandan, S.A. Antony, P. Ramar, Photocatalytic degradation of methylene blue dye and magnetooptical studies of magnetically recyclable spinel NixMn1-xFe2O4(x=0.0–1.0) nanoparticles. J. Mol. Structure. 1113, 79–87 (2016). https://doi.org/10.1016/j.molstruc.2016.02.032

    Article  CAS  ADS  Google Scholar 

  26. R.D. Waldron, Infrared spectra of ferrites. Phys. Rev. 99, 1727 (1955). https://doi.org/10.1103/physrev.99.1727

    Article  CAS  ADS  Google Scholar 

  27. T.T. Ahmed, I.Z. Rahman, M.A. Rahman, Study on theproperties of the copper substituted NiZn ferrites. J. Mater. Process. Technol. 153–154, 797–803 (2004). https://doi.org/10.1016/j.jmatprotec.2004.04.188

    Article  CAS  Google Scholar 

  28. W.A. Bayoumy, M.A. Gabal, Synthesis characterization and magnetic properties of Cr-substituted NiCuZn nanocrystalline ferrite. J. Alloys Compd. 506, 205–209 (2010). https://doi.org/10.1016/j.jallcom.2010.06.178

    Article  CAS  Google Scholar 

  29. J. Jadhav, S. Biswas, A.K. Yadav, S.N. Jha, D. Bhattacharyya, Structural and magnetic properties of nanocrystalline NiZn ferrites: in the context of cationic distribution. J. Alloys Compd. 696, 28–41 (2017). https://doi.org/10.1016/j.jallcom.2016.11.163

    Article  CAS  Google Scholar 

  30. O. Karaagac, S. Atmaca, H. Kockar, A. Facile, Method to synthesize nickel ferrite nanoparticles: parameter effect. J. Supercond. Nov. Magn. 30, 2359–2369 (2017). https://doi.org/10.1007/s10948-016-3796-4

    Article  CAS  Google Scholar 

  31. C. Hasirci, O. Karaagac, H. Köçkar, Superparamagnetic zinc ferrite: a correlation between high magnetizations and nanoparticle sizes as a function of reaction time via hydrothermal. J. Magn. Magn. Mater. (2018). https://doi.org/10.1016/j.jmmm.2018.11.037

    Article  Google Scholar 

  32. H. Su, X. Tang, H. Zhang, L. Jia, Z. Zhong, Influences of Bi2O3 additive on the microstructure, permeability, and power loss characteristics of Ni–Zn ferrites. J. Magn. Magn. Mater. 321, 3183–3186 (2009). https://doi.org/10.1016/j.jmmm.2009.05.046

    Article  CAS  ADS  Google Scholar 

  33. S. Dobak, C. Beatrice, F. Fiorillo, V. Tsakaloudi, C. Ragusa, Magnetic loss decomposition in co-doped Mn-Zn Ferrites. IEEE Magn. Lett. (2019). https://doi.org/10.1109/lmag.2018.2881108

    Article  Google Scholar 

  34. S.J. Feng, J. Li, S.G. Huang, X.S. Liu, Z.Y. Zhong, Magnetic hysteresis loss crossover in Ni 0.4Zn 0.6Fe 1.95Ti 0.05 O4 ferrite. J. Alloys. Compounds. 660, 398–401 (2016). https://doi.org/10.1016/j.jallcom.2015.11.062

    Article  CAS  Google Scholar 

  35. A.M.M. Farea, S. Kumar, K.M. Batoo, A. Yousef, C.G. Lee, Alimuddin, Influence of the doping of Ti4+ ions on electrical and magnetic properties of Mn1+xFe2−2xTixO4 ferrite. J. Alloys. Compounds. 469, 451–457 (2009). https://doi.org/10.1016/j.jmmm.2009.05.046

    Article  CAS  Google Scholar 

  36. Q. Liqin, G. Minlin, W. Wenwein, O. Shiqian, W. Kaituo, L. Bang, W. Xuehang, Co1-xMgxFe2O4 magnetic particles: Preparation and kinetics research of thermal transformation of the precursor. Ceramics. Internat. 40, 10857–10866 (2014). https://doi.org/10.1016/j.ceramint.2014.03.079

    Article  CAS  Google Scholar 

  37. P. Yang, Z. Liu, H. Qia, Z. Penga, X. Fub, High-performance inductive couplers based on novel Ce3+ and Co2+ ions co-doped Ni-Zn ferrites. Ceramics Internat. 45(11), 13685–21369 (2019). https://doi.org/10.1016/j.ceramint.2019.04.063

    Article  CAS  Google Scholar 

  38. Z. Zheng, H. Zhang, Q. Yang, L. Jia, Structure and electromagnetic properties of NiZn spinel ferrite with nano-sized ZnAl2O4 additions. J. Alloys. Compounds. 648, 160–167 (2015). https://doi.org/10.1016/j.jallcom.2015.06.256

    Article  CAS  Google Scholar 

  39. S. Bierlich, T. Reimann, H. Bartsch, J. Töpfer, Co/Ti-substituted M-type hexagonal ferrites for high-frequency multilayer inductors. J. Magn. Magn. Mater. 384, 1–5 (2015). https://doi.org/10.1016/j.jmmm.2015.02.009

    Article  CAS  ADS  Google Scholar 

  40. C. Liu, X. Kan, Hu. Feng, X. Liu, S. Feng, Hu. Jiyu, W. Wang, K.M.U. Rehman, M. Shezad, C. Zhang, H. Li, S. Zhou, Wu. Qiuyue, Characterizations of magnetic transition behavior and electromagnetic properties of Co-Ti co-substituted SrM-based hexaferrites SrCoxTixFe 12–2xO19 compounds. J. Alloy. Compd. 784, 1175–1186 (2019). https://doi.org/10.1016/j.jallcom.2019.01.112

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant Nos. 2021YFB3502400, 2022YFB3504800), the Key Research and Development Plan of Anhui Province (Nos. 202003a05020051, 202304a05020036), and the Education Department of Anhui Province (No. 2022AH050081).

Author information

Authors and Affiliations

Authors

Contributions

YY prepared the sample and wrote the manuscript, XK and Xl developed the experimental formula and provided the measurements, QL helped to discuss the article framework, WS provided research ideas and guided experiments. All authors contributed to the discussions and preparation of the manuscript.

Corresponding author

Correspondence to Shuangjiu Feng.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Research involving human or animals or plants participants

This experiment does not involve any human experiment and biological experiment. The authors assure that the study was free of any conflicts of interest, involving no human participants or animals or plants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Y., Feng, S., Liu, X. et al. Investigation of structural and magnetic properties of Sn-substituted NiZn spinel ferrites. J Mater Sci: Mater Electron 35, 243 (2024). https://doi.org/10.1007/s10854-024-12000-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12000-0

Navigation