Skip to main content
Log in

N-type and P-type SnOx thin films based MOX gas sensor testing

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this article, n-type and p-type SnOx thin films are deposited using the same precursor with a simple chemical method of spray pyrolysis on the top of the fabricated MOX gas sensor at T = 350 ℃ and 500 ℃ respectively, without any post-deposition annealing step. The deposited films were investigated using the following characterization methods. X-ray diffraction revealed that the deposited n-type SnO2 thin films have a tetragonal rutile structure and in p-type SnO we identified two phases, a tetragonal SnO and orthorhombic SnO. Atomic force microscopy (AFM) indicates that films are homogenous and uniform within a scanned area of 334 nm with a small grain size of 10–15 nm. The performance of the fabricated sensors was performed by electrical characterization and sensing behavior under different concentrations of ethanol C = 7000 ppm, 3500 ppm, 1200 ppm, 600 ppm, and 300 ppm, at an operating temperature Top = 250 ℃ and RH 50%. The evolution under gases showed a higher response for p-type SnO as compared to n-type SnO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data are contained within the article.

References

  1. J. Burgués, S. Marco, Low power operation of temperature-modulated metal oxide semiconductor gas sensors. Sensors 18(2), 339 (2018)

    ADS  PubMed  PubMed Central  Google Scholar 

  2. S. Chaisitsak, Nanocrystalline SnO2: F thin films for liquid petroleum gas sensors. Sensors 11(7), 7127–7140 (2011)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Y. Bakha, S.M. Merah, H. Khales, M. Kameche, A. Djelloul, Development of new co-planar platform configuration of MOX gas sensor. Appl. Phys. A 129(5), 363 (2023)

    ADS  CAS  Google Scholar 

  4. C. Travan, A. Bergmann, NO2 and NH3 sensing characteristics of inkjet printing graphene gas sensors. Sensors 19(15), 3379 (2019)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. J. Spannhake, A. Helwig, O. Schulz, and G. Müller, Micro-fabrication of gas sensors. in Solid State Gas Sensing, Springer, 2008, pp. 1–46.

  6. P.K. Sekhar et al., Application of commercial automotive sensor manufacturing methods for NOx/NH3 mixed potential sensors for on-board emissions control. Sens. Actuators B Chem. 144(1), 112–119 (2010)

    CAS  Google Scholar 

  7. H. Liu, L. Zhang, K.H.H. Li, O.K. Tan, Microhotplates for metal oxide semiconductor gas sensor applications—Towards the CMOS-MEMS monolithic approach. Micromachines 9(11), 557 (2018)

    PubMed  PubMed Central  Google Scholar 

  8. G.F. Fine, L.M. Cavanagh, A. Afonja, R. Binions, Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors 10(6), 5469–5502 (2010)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. M. Grassi, P. Malcovati, L. Francioso, P. Siciliano, A. Baschirotto, Integrated interface circuit with multiplexed input and digital output for a 5 × 5 SnO2 thick film gas-sensor matrix. Sens. Actuators B Chem. 132(2), 568–575 (2008)

    CAS  Google Scholar 

  10. P. Bhattacharyya, Technological journey towards reliable microheater development for MEMS gas sensors: a review. IEEE Trans. device Mater. Reliab. 14(2), 589–599 (2014)

    CAS  Google Scholar 

  11. M. Gardon, J.M. Guilemany, A review on fabrication, sensing mechanisms and performance of metal oxide gas sensors. J. Mater. Sci. Mater. Electron. 24, 1410–1421 (2013)

    CAS  Google Scholar 

  12. N. Goel, K. Kunal, A. Kushwaha, M. Kumar, Metal oxide semiconductors for gas sensing. Eng. Reports 5(6), e12604 (2023)

    CAS  Google Scholar 

  13. K.G. Krishna, S. Parne, N. Pothukanuri, V. Kathirvelu, S. Gandi, D. Joshi, Nanostructured metal oxide semiconductor-based gas sensors: a comprehensive review. Sens. Actuators A Phys. 341, 113578 (2022)

    CAS  Google Scholar 

  14. R.C. Pawar et al., Surfactant assisted low temperature synthesis of nanocrystalline ZnO and its gas sensing properties. Sens. Actuators B Chem. 151(1), 212–218 (2010)

    CAS  Google Scholar 

  15. Y. Xing, T.A. Vincent, M. Cole, J.W. Gardner, Real-time thermal modulation of high bandwidth MOX gas sensors for mobile robot applications. Sensors 19(5), 1180 (2019)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. C. Guillén, J. Herrero, P-type SnO thin films prepared by reactive sputtering at high deposition rates. J. Mater. Sci. Technol. 35(8), 1706–1711 (2019)

    Google Scholar 

  17. J. Um, S.E. Kim, Homo-junction pn diode using p-type SnO and n-type SnO2 thin films. ECS Solid State Lett. 3(8), P94 (2014)

    CAS  Google Scholar 

  18. S. Benzitouni et al., High sensitivity of porous Cu-doped SnO2 thin films to methanol. Adv. Nanoparticles 5(02), 140–148 (2016)

    CAS  Google Scholar 

  19. M. Batzill, U. Diebold, The surface and materials science of tin oxide. Prog. Surf. Sci. 79(2–4), 47–154 (2005)

    ADS  CAS  Google Scholar 

  20. M.A. Mäki-Jaskari, T.T. Rantala, Possible structures of nonstoichiometric tin oxide: the composition Sn2O3. Model. Simul. Mater. Sci. Eng. 12(1), 33 (2003)

    ADS  Google Scholar 

  21. J. Sundqvist, J. Lu, M. Ottosson, A. Hårsta, Growth of SnO2 thin films by atomic layer deposition and chemical vapour deposition: a comparative study. Thin Solid Films 514(1–2), 63–68 (2006)

    ADS  CAS  Google Scholar 

  22. A. Shanmugasundaram, P. Basak, L. Satyanarayana, S.V. Manorama, Hierarchical SnO/SnO2 nanocomposites: Formation of in situ p–n junctions and enhanced H2 sensing. Sens. Actuators B Chem. 185, 265–273 (2013)

    CAS  Google Scholar 

  23. Y. Bakha, H. Khales, A. Tab, A. Smatti, and S. Hamzaoui, Structural and Optical Parameters of SnO2 Nanoparticle Deposited by Spray Pyrolysis. in ICREEC 2019: Proceedings of the 1st International Conference on Renewable Energy and Energy Conversion, 2020, p. 335.

  24. Y. Bakha, Y. Djeridane, W. Aouimeur, L. Menasri, A. Smatti, and S. Hamzaoui, ZnO based gas sensor testing. in 2014 9th International Design and Test Symposium (IDT), pp. 1–3 (2014)

  25. C.M. Campo, J.E. Rodríguez, A.E. Ramírez, Thermal behaviour of romarchite phase SnO in different atmospheres: a hypothesis about the phase transformation. Heliyon (2016). https://doi.org/10.1016/j.heliyon.2016.e00112

    Article  PubMed  PubMed Central  Google Scholar 

  26. J. Oviedo, M.J. Gillan, First-principles study of the interaction of oxygen with the SnO2 (1 1 0) surface. Surf. Sci. 490(3), 221–236 (2001)

    ADS  CAS  Google Scholar 

  27. M.A. Bouacheria, A. Djelloul, M. Adnane, Y. Larbah, L. Benharrat, Characterization of pure and Al doped ZnO thin films prepared by sol gel method for solar cell applications. J. Inorg. Organomet. Polym. Mater. 32(7), 2737–2747 (2022)

    CAS  Google Scholar 

  28. A.L. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56(10), 978 (1939)

    ADS  CAS  Google Scholar 

  29. P. Kumar, G.K. Rao, Comprehensive analysis of microstructural, optical and electrical properties of ZnS thin films deposited by cost effective SILAR technique. Mater. Today Proc. 65, 380–384 (2022)

    CAS  Google Scholar 

  30. G.K. Williamson, R.E. Smallman, III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum. Philos. Mag. 1(1), 34–46 (1956)

    ADS  CAS  Google Scholar 

  31. İA. Kariper, Optical properties and surface energy of tellurium oxide thin film. J. Opt. 47, 504–510 (2018)

    Google Scholar 

  32. M.F. Pervez et al., Influence of total absorbed dose of gamma radiation on optical bandgap and structural properties of Mg-doped zinc oxide. Optik (Stuttg) 162, 140–150 (2018)

    ADS  CAS  Google Scholar 

  33. A. Dieguez, A. Romano-Rodrıguez, A. Vila, J.R. Morante, The complete Raman spectrum of nanometric SnO2 particles. J. Appl. Phys. 90(3), 1550–1557 (2001)

    ADS  CAS  Google Scholar 

  34. A. Nikiforov et al., Formation of SnO and SnO2 phases during the annealing of SnO(x) films obtained by molecular beam epitaxy. Appl. Surf. Sci. 512, 145735 (2020)

    CAS  Google Scholar 

  35. J.S. Jung, S.J. Park, J.H. Ye, J.G. Woo, B.S. Bae, E.-J. Yun, Optical, structural, and electrical properties of sputter-deposited SnOx thin films. Thin Solid Films 747, 139139 (2022)

    ADS  CAS  Google Scholar 

  36. J. Joseph, V. Mathew, J. Mathew, K.E. Abraham, Studies on physical properties and carrier conversion of SnO2: Nd thin films. Turkish J. Phys. 33(1), 37–47 (2009)

    CAS  Google Scholar 

  37. G. Suresh, R. Sathishkumar, B. Iruson, B. Sathyaseelan, K. Senthilnathan, E. Manikandan, Study on structural, luminescence properties and Hall effect of SnO2 nanoparticles obtained by a Co-precipitation technique. Int. J. Nano Dimens. 10(3), 242–251 (2019)

    Google Scholar 

  38. C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10(3), 2088–2106 (2010)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. H. Fan, T. Zhang, X. Xu, N. Lv, Fabrication of N-type Fe2O3 and P-type LaFeO3 nanobelts by electrospinning and determination of gas-sensing properties. Sens. Actuators B Chem. 153(1), 83–88 (2011)

    CAS  Google Scholar 

  40. Y.K. Gautam, K. Sharma, S. Tyagi, A.K. Ambedkar, M. Chaudhary, B. Pal Singh, Nanostructured metal oxide semiconductor-based sensors for greenhouse gas detection: progress and challenges. R. Soc. Open Sci. 8(3), 201324 (2021)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. C. Fan et al., Enhanced H2S gas sensing properties by the optimization of p-CuO/n-ZnO composite nanofibers. J. Mater. Sci. 55(18), 7702–7714 (2020)

    ADS  CAS  Google Scholar 

  42. A. Alhadi et al., Pure SnO2 gas sensor with high sensitivity and selectivity towards C2H5OH. Adv. Nanoparticles 10(02), 66–74 (2021)

    CAS  Google Scholar 

  43. R.C. Pawar, J.-W. Lee, V.B. Patil, C.S. Lee, Synthesis of multi-dimensional ZnO nanostructures in aqueous medium for the application of gas sensor. Sens. Actuators B Chem. 187, 323–330 (2013)

    CAS  Google Scholar 

  44. S. Mishra, C. Ghanshyam, N. Ram, S. Singh, R.P. Bajpai, R.K. Bedi, Alcohol sensing of tin oxide thin film prepared by sol–gel process. Bull. Mater. Sci. 25, 231–234 (2002)

    CAS  Google Scholar 

  45. Z. Witkiewicz, K. Jasek, M. Grabka, Semiconductor gas sensors for detecting chemical warfare agents and their simulants. Sensors 23(6), 3272 (2023)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

YB directed the project, all authors contributed to the study. Materials preparation conception and design; YB, SMM and AD performed the experiments. YB took the lead in writing the manuscript. All authors provided critical feedback and helped shape the research. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yamna Bakha.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merah, S.M., Bakha, Y. & Djelloul, A. N-type and P-type SnOx thin films based MOX gas sensor testing. J Mater Sci: Mater Electron 35, 250 (2024). https://doi.org/10.1007/s10854-024-11997-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-11997-8

Navigation