Skip to main content
Log in

Enhanced photoluminescence of InP@ZnS quantum dots induced by increasing the indium myristate-to-tris(trimethylsilyl)phosphine molecular precursors ratio

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The synthesis and characterization of InP@ZnS quantum dots (QDs) synthesised by a one-step chemical method without injection of hot precursors are presented. The effect of the ratio of indium myristate-to-tris(trimethylsilyl)phosphine (\(\text{I}\text{n}{\left(\text{M}\text{A}\right)}_{\text{x}}/\text{P}{\left(\text{T}\text{M}\text{S}\right)}_{3}\)) molecular precursors on the structural and optical properties of the QDs were analysed. Using X-ray diffraction was demonstrated that the InP@ZnS QDs have a zinc blende crystalline phase, as was confirmed by High resolution Transmission electron microscope, and the particle sizes were found to range between 3.75 and 9.72 nm with increasing molecular precursor ratio. The observed colour variation of the QDs from yellow to green in toluene is due to the quantum confinement effect, which occurs when the nanocrystal size is smaller than the Bohr exciton radius. The QDs bandgap energy, determined by the absorbance spectroscopy, was found to depend on the \(\text{I}\text{n}{\left(\text{M}\text{A}\right)}_{\text{x}}\) concentration, ranging from 2.90 to 3.21 eV. As the \(\text{I}\text{n}{\left(\text{M}\text{A}\right)}_{\text{x}}/\text{P}{\left(\text{T}\text{M}\text{S}\right)}_{3}\) ratio increases, \(\text{I}\text{n}\text{P}@\text{Z}\text{n}\text{S}\) quantum dots exhibit enhanced photoluminescence due to passivation effects, which is redshifted from 2.91 to 2.19 eV. The temperature-dependent photoluminescence was measured in the range of 20 to 300 K, in which was observed that the photoluminescent bands did not follow the Varshni equation. The obtained results contribute to the understanding of the synthesis and physical properties of \(\text{I}\text{n}\text{P}@\text{Z}\text{n}\text{S}\) QDs, which have potential applications in various fields, such as photovoltaics, bioimaging, and sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. M. Manchester, N.F. Steinmetz. Curr. Top. Microbiol. Immunol. 327, v (2009) (PMID: 19198567)

  2. J. Douda, P. A. Calva, T. V. Torchynska, R. Peña Sierra, J. M. de la Rosa Vázquez. Superficies y Vacío 21, 10 (2008). https://www.scielo.org.mx/pdf/sv/v21n4/v21n4a3.pdf

  3. M.J. Murcia, D.L. Shaw, H. Woodruff, C.A. Naumann, B.A. Young, E. C. Long. Chem. Mater 18, 2219 (2006). https://doi.org/10.1021/cm0505547

    Article  CAS  Google Scholar 

  4. J. Hernández, I. Thompson. Cancer. 101, 894 (2004). https://doi.org/10.1002/cncr.20480

    Article  CAS  PubMed  Google Scholar 

  5. W.C. Chan, S. Nie, Science 281, 2016 (1998). https://doi.org/10.1126/science.281.5385.2016

    Article  CAS  PubMed  ADS  Google Scholar 

  6. H. Mattoussi, J.M. Mauro, E.R. Goldman, G.P. Anderson, V.C. Sundar, F.V. Mikulec, M. G. Bawendi. J. Am. Chem. Soc. 122, 12142 (2000). https://doi.org/10.1021/ja002535y

    Article  CAS  Google Scholar 

  7. E. Klarreich, Nature. 413, 450 (2001). https://doi.org/10.1038/35097256

    Article  CAS  PubMed  ADS  Google Scholar 

  8. P.U. Londhe, A.B. Rohom, G.R. Bhand, S. Jadhav, M.G. Lakhe, N.B. Chaure, J. Mater. Sci. : Mater. Electron. 28, 5207 (2017). https://doi.org/10.1007/s10854-016-6177-7

    Article  CAS  Google Scholar 

  9. S.S. Kamble, A. Sikora, S.L. Deshmukh, S.T. Pawar, G.T. Chavan, D.P. Dubal, N.B. Chaure, N.N. Maldar, L. P. Deshmukh. J. Mater. Sci.: Mater. Electron. 27, 12302 (2016). https://doi.org/10.1007/s10854-016-5064-6

    Article  CAS  Google Scholar 

  10. A.B. Rohom, P.U. Londhe, P.R. Jadhav, G.R. Bhand, N.B. Chaure., J. Mater. Sci. : Mater. Electron. 28, 17107 (2017). https://doi.org/10.1007/s10854-017-7637-4

    Article  CAS  Google Scholar 

  11. X. Gao, W.C.V. Chan, S. Nie, J. Biomed. Opt. 7, 532 (2002). https://doi.org/10.1117/1.1506706

    Article  CAS  PubMed  ADS  Google Scholar 

  12. G. Veronesi, M. Moros, H. Castillo-Michel, L. Mattera, G. Onorato, K.D. Wegner, W.L. Ling, P. Reiss, C. Tortiglione, ACS Appl. Mater. Interfaces. 11, 35630 (2019). https://doi.org/10.1021/acsami.9b15433

    Article  CAS  PubMed  Google Scholar 

  13. W. Li, G.S.K. Schierle, B. Lei, Y. Liu, C. F. Kaminski. Chem. Rev. 122, 12495 (2022). https://doi.org/10.1021/acs.chemrev.2c00050

    Article  CAS  Google Scholar 

  14. S. Xu, W. Pan, Z.L. Song, Molecules 28, 1906 (2023). https://doi.org/10.3390/molecules28041906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. T.M. Liu, J. Conde, T. Lipiński, T. Lipiński, A. Bednarkiewicz, C.C. Huang, NPG Asia Mater. 8, e295 (2016). https://doi.org/10.1038/am.2016.106

    Article  CAS  Google Scholar 

  16. L. Ceresa, J. Chavez, E. Kitchner, J. Kimball, I. Gryczynski, Z. Gryczynski Exp. Biol. Med. (Maywood). 247, 1840 (2022). https://doi.org/10.1177/15353702221112121

    Article  CAS  Google Scholar 

  17. R. Borlan, M. Focsan, D. Maniu, S. Astilean, Int. J. Nanomedicine. 16, 2147 (2021). https://doi.org/10.2147/IJN.S295234

    Article  PubMed  PubMed Central  Google Scholar 

  18. W. Zhang, G. Chen, J. Wang, B.C. Ye, X. Zhong, Inorg. Chem. 48, 9723 (2009). https://doi.org/10.1021/ic9010949

    Article  CAS  PubMed  Google Scholar 

  19. R.E. Bailey, A.M. Smith, S. Nie, E. Phys, Low-Dimens, Syst Nanostruct. 25, 1 (2004). https://doi.org/10.1016/j.physe.2004.07.013

    Article  CAS  Google Scholar 

  20. S.B. Rizvi, S. Ghaderi, M. Keshtgar, A.M. Seifalian, Nano Rev. (2010). https://doi.org/10.3402/nano.v1i0.5161

    Article  PubMed  PubMed Central  Google Scholar 

  21. Y. Kim, J.H. Chang, H. Choi, Y.H. Kim, W.K. Bae, S. Jeong. Chem. Sci. 11, 913 (2020). https://doi.org/10.1039/C9SC04290C

    Article  CAS  Google Scholar 

  22. L. Li, P. Reiss., J. Am. Chem. Soc. 130, 11588 (2008). https://doi.org/10.1021/ja803687e

    Article  CAS  PubMed  Google Scholar 

  23. J. Zhang, X. Zhang, J.Y. Zhang., J. Phys. Chem. C 114, 3904 (2010). https://doi.org/10.1021/jp9120194

    Article  CAS  Google Scholar 

  24. G. Ahmad, A. Batool, Q. Iqbal, A. Iqbal, F. Ali, S. Nawaz, N.A. Shad, M.M. Sajid, Y. Javed, IOP Conf. Ser. : Mater. Sci. Eng. 863, 012020 (2020). https://doi.org/10.1088/1757-899X/863/1/012020

    Article  CAS  Google Scholar 

  25. J. Díaz-Reyes, J.I. Contreras-Rascón, J.S. Arias-Cerón, J.F. Sánchez-Ramírez, M. Galván-Arellano, J. Martínez-Juárez, J. A Balderas-López Mater. Sci. Semicond. Process. 37, 199 (2015). https://doi.org/10.1016/j.mssp.2015.03.001

    Article  CAS  Google Scholar 

  26. H.J. Byun, J.C. Lee, H. Yang, J. Colloid Interface Sci. 355, 35 (2011). https://doi.org/10.1016/j.jcis.2010.12.013

    Article  CAS  PubMed  ADS  Google Scholar 

  27. R. Toufanian, A. Piryatinski, A.H. Mahler, R. Iyer, J.A. Hollingsworth, A. M. Dennis. Front. Chem. 6, 567 (2018). https://doi.org/10.3389/fchem.2018.00567

    Article  CAS  ADS  Google Scholar 

  28. H. Li, C. Jia, X. Meng, H. Li, Front. Chem. (2019). https://doi.org/10.3389/fchem.2018.00652

    Article  PubMed  PubMed Central  Google Scholar 

  29. K.M. Ham, M. Kim, S. Bock, J. Kim, W. Kim, H.S. Jung, J. An, H. Song, J.W. Kim, H.M. Kim, W.Y. Rho, S.H. Lee, S.-. Park, D.-E. Kim, B. H. Jun. Int. J. Mol. Sci. 23, 10977 (2022). https://doi.org/10.3390/ijms231810977

    Article  CAS  Google Scholar 

  30. F. Ángel-Huerta, M.P. González-Araoz, J.F. Sánchez-Ramírez, J. Díaz-Reyes, J.L. Herrera-Pérez, J.S. Arias-Cerón, J.G. Mendoza-Álvarez, J. Lumin. 197, 277 (2018). https://doi.org/10.1016/j.jlumin.2018.01.056

    Article  CAS  Google Scholar 

  31. J. Mimila-Arroyo, J. Diaz-Reyes, A. Lusson., J. Appl. Phys. 84, 1572 (1998). https://doi.org/10.1063/1.368225

    Article  CAS  ADS  Google Scholar 

  32. J. Díaz-Reyes, J.I. Contreras-Rascón, M. Galván-Arellano, J.S. Arias-Cerón, J.E.M. Gutiérrez-Arias, J.E. Flores-Mena, M.M. Morín-Castillo, Braz J. Phys. 46, 612 (2016). https://doi.org/10.1007/s13538-016-0445-0

    Article  CAS  ADS  Google Scholar 

  33. Y. Wang, A. Suna, W. Mahler, R. Kasowski., J. Chem. Phys. 87, 7315 (1987). https://doi.org/10.1063/1.453325

    Article  CAS  ADS  Google Scholar 

  34. L.E. Brus., J. Chem. Phys. 80, 4403 (1984). https://doi.org/10.1063/1.447218

    Article  CAS  ADS  Google Scholar 

  35. M. Levinshteǐn, S. Rumyantsev, M. Shur, Handbook Series on Semiconductor Parameters (World Scientific, Singapore, 1996)

    Book  Google Scholar 

  36. S. Jiménez-Sandoval, M. Meléndez-Lira, I. Hernández-Calderón., J. Appl. Phys. 72, 4197 (1992). https://doi.org/10.1063/1.352230

    Article  ADS  Google Scholar 

  37. A.D. Lad, S. Mahamuni, Phys. Rev. B (2008). https://doi.org/10.1103/PhysRevB.78.125421

    Article  Google Scholar 

  38. J. Díaz-Reyes, J.G. Mendoza-Álvarez, J. Cardona-Bedoya, M.L. Gómez-Herrera, J.L. Herrera-Perez, Phys. Stat. Sol. (c) (2004). https://doi.org/10.1002/pssc.200404896

    Article  Google Scholar 

  39. Y.P. Varshni, Physica. 34, 149 (1967). https://doi.org/10.1016/0031-8914(67)90062-6

    Article  CAS  ADS  Google Scholar 

  40. T. Onuma, S. Saito, K. Sasaki, K. Goto, T. Masui, T. Yamaguchi, T. Honda, A. Kuramata, M. Higashiwaki. Appl. Phys. Lett. 108, 101904 (2016). https://doi.org/10.1063/1.4943175

    Article  CAS  ADS  Google Scholar 

  41. N. Nepal, J. Li, M.L. Nakarmi, J.Y. Lin, H.X. Jiang, Appl. Phys. Lett. 87, 242104 (2005). https://doi.org/10.1063/1.2142333

    Article  CAS  ADS  Google Scholar 

  42. R. Pässler, Phys. Stat. Sol B 236, 710 (2003). https://doi.org/10.1002/pssb.200301752

    Article  CAS  ADS  Google Scholar 

  43. G. Ortner, M. Schwab, M. Bayer, R. Pässler, S. Fafard, Z. Wasilewski, P. Hawrylak, A Forchel Phys. Rev. B 72, 085328 (2005). https://doi.org/10.1103/PhysRevB.72.085328

    Article  CAS  ADS  Google Scholar 

  44. D.M. Toyli, D.J. Christle, A. Alkauskas, B.B. Buckley, C.G. Van de Walle, D. D. Awschalom. Phys. Rev. X. 2, 031001 (2012). https://doi.org/10.1103/PhysRevX.2.031001

    Article  CAS  Google Scholar 

  45. M.W. Doherty, V.M. Acosta, A. Jarmola, M.S.J. Barson, N.B. Manson, D. Budker, L.C.L. Hollenberg, Phys. Rev. B (2014). https://doi.org/10.1103/PhysRevB.90.041201

    Article  Google Scholar 

  46. S. Adachi, P. Capper, S. Kasap, Properties of Semiconductor Alloys: Group‐IV, III–V and II–VI Semiconductors (Wiley, Hoboken, 2009)

    Book  Google Scholar 

  47. C.A. Klein, T.M. Hartnett, C.J. Robinson, Phys. Rev. B 45, 12854 (1992). https://doi.org/10.1103/PhysRevB.45.12854

    Article  CAS  ADS  Google Scholar 

  48. G.R. Stewart, Rev. Sci. Instrum. 54, 1 (1983). https://doi.org/10.1063/1.1137207

    Article  CAS  ADS  Google Scholar 

  49. T.R. Hart, R.L. Aggarwal, B. Lax, Phys. Rev. B 1, 638 (1970). https://doi.org/10.1103/PhysRevB.1.638

    Article  ADS  Google Scholar 

Download references

Acknowledgements

One of the authors would like to thank the Doctoral Program in Advanced Technology of the UPIITA-IPN as well as the CONAHCyT (Scholarship No. 902515). Another thanks the CONAHCyT postdoctoral program and the CINVESTAV Physics Department for their invaluable support.

Funding

This work is not financially supported. The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

JDR and JFSR were responsible for conceptualization, methodology, data curation, writing—review and editing, visualization and supervision. Material preparation, data collection, and analysis were performed by JAL, MSR, JSAC, and OSS. The first draft of the manuscript was written by JDR and JSAC have equal contributions in reviewing the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Joel Díaz-Reyes.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Águila-López, J., Sánchez-Rivera, M., Arias-Cerón, J.S. et al. Enhanced photoluminescence of InP@ZnS quantum dots induced by increasing the indium myristate-to-tris(trimethylsilyl)phosphine molecular precursors ratio. J Mater Sci: Mater Electron 35, 222 (2024). https://doi.org/10.1007/s10854-024-11994-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-11994-x

Navigation