Skip to main content
Log in

Physical Property Characterization of Pb2+-Doped CdS Nanofilms Deposited by Chemical-Bath Deposition at Low Temperature

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Pb2 +-doped CdS nanofilms are prepared using the growth technique chemical bath deposition (CBD) under optimum conditions lead acetate at the reservoir temperature of 20 ± 2 °C. The Pb2+ molar concentration was in the range 0.0 ≤ x ≤ 0.19.67, which was determined by energy-dispersive X-ray spectroscopy (EDS). The X-ray diffraction results show that the films are of PbS–CdS composites with individual CdS and PbS planes. The X-ray diffraction (XRD) analysis and Raman scattering reveal that CdS-deposited films showed the zincblende (ZB) crystalline phase. The average grain size of the CdS films ranged from 1.21 to 6.67 nm that was determined by the Debye–Scherrer equation from ZB (111) direction, and it was confirmed by high-resolution transmission electron microscopy (HRTEM). Raman scattering shows that the lattice dynamics is characteristic of bimodal behaviour and the multipeaks adjust of the first optical longitudinal mode for the Pb2+-doped CdS denotes the Raman shift of the characteristic peak in the range of 305–298 cm−1 of the CdS crystals, which is associated with the lead ion incorporation. The films exhibit three direct bandgaps, ~2.44 eV attributed to CdS; the other varies continuously from 1.67 to 1.99 eV and another disappears as Pb2+ molar fraction increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jeff, Hecht, Understanding Lasers, 2nd ed., IEEE Press, New York NY(USA), 1994.

  2. Q. Q. Liu, J. H. Shi, Z. Q. Li, D. W. Zhang, X. D. Li, Z. Sun, L. Y. Zhang, S. M. Huang, Physica B 405, 4360 (2010)

    Article  ADS  Google Scholar 

  3. J.I. Contreras-Rascón, J. Díaz-Reyes, J. E. Flores-Mena, M. Galván-Arellano, L. A. Juárez-Morán, R. S. Castillo-Ojeda. Curr. Appl. Phys. 15 (2015) 1568

  4. H. M. Upadhyaya, S. Chandra. J. Mater. Sci. 29 (1994) 2734.

  5. J. Díaz-Reyes, E. López-Cruz, J. G. Mendoza-Álvarez, S. Jiménez-Sandoval, J. Appl. Phys. 100, 123503 (2006)

    Article  ADS  Google Scholar 

  6. S. Radhu, C. Vijayan, Mater. Chem. Phys. 129, 1132 (2011)

    Article  Google Scholar 

  7. W. Q. Peng, G. W. Cong, S. C. Qu, Z. G. Wang, Nanotechnology 16, 1469 (2005)

    Article  Google Scholar 

  8. J. Singh, in Physics of Semiconductors and Their Heterostructures, ed by McGraw-Hill. (1993)

    Google Scholar 

  9. K. Yamaguchi, T. T. Yoshida, M. S. Hideki, J. Phys. Chem. B 102, 9677 (1998)

    Article  Google Scholar 

  10. A. Abdulahzadeh Ziabari, F. E. Ghodsi. J. Lumin. 141 (2013) 121.

  11. G. Murugadoss. Superlattice. Microst. 52 (2012) 1026.

  12. M. Guglielmi, A. Martucci, J. Fick, G. Vitrant, J. Sol-Gel Sci. Technol. 11, 229 (1998)

    Article  Google Scholar 

  13. J. A. Lange’s, Handbook of Chemistry (McGraw Hill Book Co., Beijing, 1999)

    Google Scholar 

  14. J. A. Dean, Lange’s. Handbook of Chemistry, 13th ed. (New York: McGraw-Hill. 1987).

  15. R. Ortega-Borges, D. Lincot, J. Electrochem. Soc. 140, 3464 (1993)

    Article  Google Scholar 

  16. M. Grus, A. Sikorska, Phys. B Condens. Matter 266, 139 (1999)

    Article  ADS  Google Scholar 

  17. J. Díaz-Reyes, J. I. Contreras-Rascón, J. S. Arias-Cerón, J. F. Sánchez-Ramírez, M. Galván-Arellano, J. Martínez-Juárez, J. A. Balderas-López, Mat. Sci. Semicon. Proc 37, 199 (2015)

    Article  Google Scholar 

  18. M. Esmaili, A. Habibi-Yangjeh, Chin. J. Catal. 32, 933 (2011)

    Article  Google Scholar 

  19. M. R. Langille, M. L. Personick, J. Zhang, C. A. Mirkin, J. Am. Chem. Soc. 134, 14542 (2012)

    Article  Google Scholar 

  20. M. Grzelczak, J. Pérez-Juste, P. Mulvaney, L. M. Liz-Marzán, Chem. Soc. Rev. 37, 1783 (2008)

    Article  Google Scholar 

  21. P. Nandakumar, C. Vijayan, M. Rajalakshmi, A. K. Arora, Y. V. G. S. Murti, Phys. E. 11, 377 (2001)

    Article  Google Scholar 

  22. G. A. de Wijs, R. A. de Groot, Electrochim. Acta 46, 1989 (2001)

    Article  Google Scholar 

  23. A. Rougier, F. Portemer, A. Quédé, M. El Marssi, Appl. Surf. Sci. 153, 1 (1999)

    Article  ADS  Google Scholar 

  24. M. Regragui, M. Addou, A. Outzourhit, J. C. Bernéde, E. Elb El Idrissi, A. Benseddik, Kachouane. Thin Solid Films 358, 40 (2000)

    Article  ADS  Google Scholar 

  25. G. D. Smith, S. Firth, R. J. H. Clark, M. Cardona, J. Appl. Phys. 92, 4375 (2002)

    Article  ADS  Google Scholar 

  26. E. J. Donahue, A. Roxburgh, M. Yurchenko, Mater. Res. Bull. 33, 323 (1998)

    Article  Google Scholar 

  27. C. A. Argüello, D. L. Rousseau, S. P. S. Porto, Phys. Rev. 181, 1351 (1969)

    Article  ADS  Google Scholar 

  28. M. Abdulkhadar, B. Thomas, Nanostruct. Mater. 5, 289 (1995)

    Google Scholar 

  29. M. Froment, M. Claude-Bernard, R. Cortes, B. Mokili, D. Lincot. J. Electrochem. Soc. 142, 2642 (1995)

    Article  Google Scholar 

  30. K. K. Nanda, S. N. Sarangi, S. N. Sahu, S. K. Deb, S. N. Behera, Phys. B Condens. Matter 262, 31 (1999)

    Article  ADS  Google Scholar 

  31. H. Brunner, H. Sussner, Biochim. Biophys. Acta 271, 16 (1972)

    Article  Google Scholar 

  32. V. Sivasubramanian, A. K. Arora, M. Premila, C. S. Sundar, V. S. Sastry, Physica E: Low-dimensional Systems and Nanostructures 31, 93 (2006)

    Article  ADS  Google Scholar 

  33. S. Kar, B. Satpati, P. V. Satyam, S. Chaudhuri, J. Phys. Chem. B 109, 19134 (2005)

    Article  Google Scholar 

  34. V. M. Dzhagan, I. Lokteva, M. Ya, Valakh, O. E. Raevska, J. Kolny-Olesiak, D. R. T. Zahn, J. Appl. Phys. 106, 084318 (2009)

    Article  ADS  Google Scholar 

  35. F. Comas, G. E. Nelson Studart, Marques. Solid State Commun. 130, 477 (2004)

    Article  ADS  Google Scholar 

  36. H. Lange, M. Artemyev, U. Woggon, C. Thomsen, Nanotechnology 20, 045101 (2009)

    Article  Google Scholar 

  37. M. R. Loghman-Estarki, M. Hajizadeh-Oghaz, H. Edris, R. S. Razavi, CrystEngComm 15, 5898 (2013)

    Article  Google Scholar 

  38. D. J. Seo, J. Korean Phys. Soc 45, 1575 (2004)

    Google Scholar 

  39. B. J. Jin, H. S. Woo, S. Im, S. H. Bae, S. Y. Lee, Appl. Surf. Sci. 169/170, 521 (2001)

    Article  ADS  Google Scholar 

  40. A. I. Oliva, O. Solís-Canto, R. Castro-Rodríguez, P. Quintana, Thin Solid Films 391, 28 (2001)

    Article  ADS  Google Scholar 

  41. J. L. Pankove, Optical Processes in Semiconductors (Prentice-Hall, Englewood Cliffs, NJ), p. 1971

  42. F. Gao, Y. Wang, L. Zhang, W. Yang, L. An, J. Am. Ceram. Soc. 93, 1364 (2010)

    Google Scholar 

Download references

Acknowledgments

The authors thank SIP-IPN and CONACYT-México for their economical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Díaz-Reyes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz-Reyes, J., Contreras-Rascón, J.I., Galván-Arellano, M. et al. Physical Property Characterization of Pb2+-Doped CdS Nanofilms Deposited by Chemical-Bath Deposition at Low Temperature. Braz J Phys 46, 612–620 (2016). https://doi.org/10.1007/s13538-016-0445-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-016-0445-0

Keywords

Navigation