Skip to main content
Log in

Analyzing temperature-dependent electrical properties of amorphous silicon solar cells: experimental and simulation approach

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The electrical properties derived from the experimental dark current density–voltage characteristics of the solar cells, which ranged from 110 to 400 K, provide crucial information for analyzing performance losses and device efficiency. The device parameters of the amorphous silicon solar cells were determined using the one-diode model. An analysis was conducted to examine how temperature affects various factors such as the ideality factor (n), potential barrier height \({(\Phi }_{\text{b}})\), series resistance \(({\text{R}}_{\text{s}})\), and shunt resistance \(({\text{R}}_{\text{s}})\). To compare results, the same experimental data were fitted using different methods, including Lambert's Analytical Method, the Two Region Method, the variational least squares method, the Cheung's method. Finally, we performed a simulation on our solar cell using the SCAPS 1D software. This simulation took into account the parasitic resistance values found experimentally in this work and evaluated the effect of doping density of the a-SiC:H and Graphene oxide core layer, as well as the effect of temperature on the photovoltaic parameters of our solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All relevant data and materials have been already mentioned in the manuscript.

References

  1. R.S. Ohl, Light-sensitive electric device, in, Google Patents, 1946

  2. W. Shockley, H. J. Queisser, Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells, 2016.

  3. S. Akhil, S. Akash, A. Pasha, B. Kulkarni, M. Jalalah, M. Alsaiari, R.G. Balakrishna et al., Review on perovskite silicon tandem solar cells: Status and prospects 2T, 3T and 4T for real world conditions. Mater. Des. 211, 110138 (2021)

    Article  CAS  Google Scholar 

  4. Md.S. Rana, Md.M. Islam, M. Julkarnain, Enhancement in efficiency of CZTS solar cell by using CZTSe BSF layer. Sol. Energy 226, 272–287 (2021). https://doi.org/10.1016/j.solener.2021.08.035

    Article  ADS  CAS  Google Scholar 

  5. M. Roumie, F. Lmai, K. Zahraman, B. Nsouli, A. Zaiour, M. Hage-Ali, On the analysis of H in thin layers of Pt electroless contacts using elastic recoil detection technique. Nucl. Instrum. Methods Phys. Res. Sect. B 341, 44–47 (2014). https://doi.org/10.1016/j.nimb.2014.06.035

    Article  ADS  CAS  Google Scholar 

  6. F. Lmai, R. Moubah, A. El. Amiri, A. Boudali, E.K. Hlil, H. Lassri, Effect of plastic deformation on the optical and electrical properties in Cd0.96Zn0.04Te single crystals. J. Phys. Chem. Solids 100, 45–48 (2017). https://doi.org/10.1016/j.jpcs.2016.07.009

    Article  ADS  CAS  Google Scholar 

  7. N. Brihi, F. Lmai, Z. Takkouk, F. Ayad, M. Ayoub, M. Hage-Ali, Influences of the dislocation density on the electric behavior of n-CdTe. Mater. Sci. Eng. B 137(1–3), 49–52 (2007). https://doi.org/10.1016/j.mseb.2006.10.003

    Article  CAS  Google Scholar 

  8. K. Zahraman et al., Study of the thickness of the dead layer below electrodes, deposited by electroless technique, in CdTe nuclear detectors. IEEE Trans. Nucl. Sci. 53(1), 378–382 (2006). https://doi.org/10.1109/TNS.2006.869846

    Article  ADS  CAS  Google Scholar 

  9. I. Ait Elkoua, R. Masrour, A comparative study of physical and thermoelectrical characteristics of the new full-Heusler alloys Ag2TiGa and Ag2VGa with ab initio calculations. Int. J. Quantum Chem. 124(1), e27307 (2024). https://doi.org/10.1002/qua.27307

    Article  CAS  Google Scholar 

  10. I. AitElkoua, R. Masrour, Investigation of structural, electronic, magnetic, and mechanical stability of non-trivial topology phase in compound full-Heusler alloys TiHfFeX (X=Al, Ga, In). Mod. Phys. Lett. B 1, 2450187–2450217 (2024)

    Article  Google Scholar 

  11. S. Ezairi, A. Elouafi, F. Lmai, A. Tizliouine, A. Elbachiri, Effect of cerium doping in tuning the optical and photoluminescence properties of TiO2 nanoparticles. J. Mater. Sci. Mater. Electron. 34(28), 1924 (2023). https://doi.org/10.1007/s10854-023-11335-4

    Article  CAS  Google Scholar 

  12. H. Benali, B. Hartiti, F. Lmai, A. Batan, S. Fadili, P. Thevenin, Synthesis and characterization of Mg-doped ZnO thin-films for photovoltaic applications. Mater. Today Proc. 66, 212–216 (2022). https://doi.org/10.1016/j.matpr.2022.04.490

    Article  CAS  Google Scholar 

  13. L. Guin, P. Roca i Cabarrocas, M.E. Jabbour, N. Triantafyllidis, Effect of strain on the dark current-voltage characteristic of silicon heterojunction solar cells. Sol. Energy 196, 457–461 (2020). https://doi.org/10.1016/j.solener.2019.12.037

    Article  ADS  CAS  Google Scholar 

  14. R. Nouchi, Extraction of the Schottky parameters in metal-semiconductor-metal diodes from a single current-voltage measurement. J. Appl. Phys. 116(18), 184505 (2014). https://doi.org/10.1063/1.4901467

    Article  CAS  Google Scholar 

  15. M. Chegaar, A. Hamzaoui, A. Namoda, P. Petit, M. Aillerie, A. Herguth, Effect of illumination intensity on solar cells parameters. Energy Proc. 36, 722–729 (2013). https://doi.org/10.1016/j.egypro.2013.07.084

    Article  CAS  Google Scholar 

  16. K. Bouzidi, M. Chegaar, M. Aillerie, Solar cells parameters evaluation from dark I-V characteristics. Energy Proc. 18, 1601–1610 (2012). https://doi.org/10.1016/j.egypro.2012.06.001

    Article  CAS  Google Scholar 

  17. H. Norde, A modified forward I-V plot for Schottky diodes with high series resistance. J. Appl. Phys. 50(7), 5052–5053 (1979). https://doi.org/10.1063/1.325607

    Article  ADS  CAS  Google Scholar 

  18. A. Ortiz-Conde, F.J. García Sánchez, J.J. Liou, J. Andrian, R.J. Laurence, P.E. Schmidt, A generalized model for a two-terminal device and its applications to parameter extraction. Solid-State Electron. 38(1), 265–266 (1995). https://doi.org/10.1016/0038-1101(94)00141-2

    Article  ADS  CAS  Google Scholar 

  19. A. Kaminski, J.J. Marchand, A. Laugier, Non ideal dark I–V curves behavior of silicon solar cells. Sol. Energy Mater. Sol. Cells 1, 1 (1998)

    Google Scholar 

  20. D. Gromov, V. Pugachevich, Modified methods for the calculation of real Schottky-diode parameters. Appl. Phys. Solids Surf. 59(3), 331–333 (1994). https://doi.org/10.1007/BF00348239

    Article  ADS  Google Scholar 

  21. J.H. Werner, Schottky barrier and pn-junction I/V plots ? Small signal evaluation. Appl. Phys. Solids Surf. 47(3), 291–300 (1988). https://doi.org/10.1007/BF00615935

    Article  ADS  Google Scholar 

  22. V. Mikhelashvili et al., On the extraction of linear and nonlinear physical parameters in nonideal diodes. J. Appl. Phys. 85(9), 6873–6883 (1999). https://doi.org/10.1063/1.370206

    Article  ADS  CAS  Google Scholar 

  23. S.K. Cheung, N.W. Cheung, Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett. 49(2), 85–87 (1986). https://doi.org/10.1063/1.97359

    Article  ADS  CAS  Google Scholar 

  24. M. Burgelman, P. Nollet, S. Degrave, Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361–362, 527–532 (2000). https://doi.org/10.1016/S0040-6090(99)00825-1

    Article  Google Scholar 

  25. T. Chargui, F. Lmai, M. Al-Hattab, O. Bajjou, K. Rahmani, Experimental and numerical study of the CIGS/CdS heterojunction solar cell. Opt. Mater. 140, 113849 (2023). https://doi.org/10.1016/j.optmat.2023.113849

    Article  CAS  Google Scholar 

  26. T. Chargui, F. Lmai, K. Rahmani, Improving efficiency of Cu2CoSnS4 solar cells using an HTL layer: a numerical study. Mater. Today Proc. (2023). https://doi.org/10.1016/j.matpr.2023.11.035

    Article  Google Scholar 

  27. F. Lmai, S. Ezairi, A. Azouz, Optical properties influence of the polarization and the temperature on heterojunction organic solar cell. Optik 262, 169295 (2022). https://doi.org/10.1016/j.ijleo.2022.169295

    Article  ADS  CAS  Google Scholar 

  28. H. Sheng et al., Parameters extraction of photovoltaic models using an improved moth-flame optimization. Energies 12(18), 3527 (2019). https://doi.org/10.3390/en12183527

    Article  Google Scholar 

  29. Z. Çaldıran, M. Şinoforoğlu, Ö. Metin, Ş Aydoğan, K. Meral, Space charge limited current mechanism (SCLC) in the graphene oxide–Fe3O4 nanocomposites/n-Si heterojunctions. J. Alloys Compd. 631, 261–265 (2015). https://doi.org/10.1016/j.jallcom.2015.01.117

    Article  CAS  Google Scholar 

  30. A. Augusto, J. Karas, P. Balaji, S.G. Bowden, R.R. King, Exploring the practical efficiency limit of silicon solar cells using thin solar-grade substrates. J. Mater. Chem. A 8(32), 16599–16608 (2020). https://doi.org/10.1039/D0TA04575F

    Article  CAS  Google Scholar 

  31. D.J. Gundlach, L. Zhou, J.A. Nichols, T.N. Jackson, P.V. Necliudov, M.S. Shur, An experimental study of contact effects in organic thin film transistors. J. Appl. Phys. 100(2), 024509 (2006). https://doi.org/10.1063/1.2215132

    Article  ADS  CAS  Google Scholar 

  32. S.K. Mourya, G. Malik, B. Kumar, R. Chandra, The role of non-homogeneous barrier on the electrical performance of 15R–SiC Schottky diodes grown by in-situ RF sputtering. Mater. Sci. Semicond. Process. 149, 106855 (2022). https://doi.org/10.1016/j.mssp.2022.106855

    Article  CAS  Google Scholar 

  33. I. Nassar-eddine, A. Obbadi, Y. Errami, A. El Fajri, M. Agunaou, Parameter estimation of photovoltaic modules using iterative method and the Lambert W function: a comparative study. Energy Convers. Manag. 119, 37–48 (2016). https://doi.org/10.1016/j.enconman.2016.04.030

    Article  CAS  Google Scholar 

  34. M. Buffière et al., Spectral current–voltage analysis of kesterite solar cells. J. Phys. Appl. Phys. 47(17), 175101 (2014). https://doi.org/10.1088/0022-3727/47/17/175101

    Article  ADS  CAS  Google Scholar 

  35. A.K. Das, R. Mandal, D.K. Mandal, The current transport mechanism of Al/Beetroot/Cu used as an organic semiconductor Schottky diode is superior than natural dye-based thin film devices. Microelectron. Eng. 261, 111816 (2022). https://doi.org/10.1016/j.mee.2022.111816

    Article  CAS  Google Scholar 

  36. M.M. El-Nahass, H.A.M. Ali, Temperature dependent I-V characterization of Coronene/p-Si based heterojunctions: space charge limited current, Schottky emission at high voltages, thermionic emission and pool-Frenkel emission at low voltages. Solid State Sci. 106, 106297 (2020). https://doi.org/10.1016/j.solidstatesciences.2020.106297

    Article  CAS  Google Scholar 

  37. J.O. Bodunrin, D.A. Oeba, S.J. Moloi, Current-voltage and capacitance-voltage characteristics of cadmium-doped p-silicon Schottky diodes. Sens. Actuators Phys. 331, 112957 (2021). https://doi.org/10.1016/j.sna.2021.112957

    Article  CAS  Google Scholar 

  38. S. Yiğit Gezgin, Modelling and investigation of the electrical properties of CIGS/n-Si heterojunction solar cells. Opt. Mater. 131, 112738 (2022). https://doi.org/10.1016/j.optmat.2022.112738

    Article  CAS  Google Scholar 

  39. J. Fatima Rasheed, V. Suresh Babu, p+aSixC1-x: H/i-aSi:H/n+aSi1-xGex: H graded band gap single junction solar cell with composition graded amorphous silicon carbon alloy as window layer. Mater. Today Proc. 39, 1910–1915 (2021). https://doi.org/10.1016/j.matpr.2020.08.309

    Article  CAS  Google Scholar 

  40. T. Thomas, D. Johny, B. Sudakshina, Simulation analysis on the effect of graphene oxide as hole transporting layer in Cs2AuBiCl6 based double perovskite solar cell – SCAPS 1D approach. Mater. Today Proc. (2023). https://doi.org/10.1016/j.matpr.2023.05.349

    Article  Google Scholar 

  41. X. Sun, Y. Liu, Z. Li, H.-L. Hwang, Double p-SiOx layers to improve the efficiency of p–i–n a-SiGe: H thin film solar cells. J. Mater. Sci. Mater. Electron. 30(3), 1993–1997 (2019). https://doi.org/10.1007/s10854-018-0470-6

    Article  CAS  Google Scholar 

  42. W. Qarony et al., Efficient amorphous silicon solar cells: characterization, optimization, and optical loss analysis. Results Phys. 7, 4287–4293 (2017). https://doi.org/10.1016/j.rinp.2017.09.030

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors express their acknowledgments to Mr. Marc Burgelman for ensuring the accessibility of the SCAPS-1D software.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the simulation, application, and manuscript preparations. All authors have contributed to revising the work and approved it for publication.

Corresponding author

Correspondence to Taoufik Chargui.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chargui, T., Lmai, F. Analyzing temperature-dependent electrical properties of amorphous silicon solar cells: experimental and simulation approach. J Mater Sci: Mater Electron 35, 254 (2024). https://doi.org/10.1007/s10854-024-11993-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-11993-y

Navigation