Skip to main content

Advertisement

Log in

The Correlation of Device Parameters with Illumination Energy to Explore the Performance of a Monocrystalline Silicon Solar Module

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The effect of illumination energy on the electrical parameters of a monocrystalline silicon solar module was investigated and results used to reveal the effective spectrum which can help in generating the optimum power and photovoltaic effect. The current-voltage (I-V) characteristics of the device were measured under different illumination energies. Results showed that the ideality factor (n), series resistance (Rs) and saturation current (Io) are mostly dependent on the illumination energy, while the shunt resistance (Rsh) and photocurrent (Iph) are illumination intensity-dependent. The increase in illumination energy led to decrease in the series resistance but increase in the saturation current and ideality factor. On the other hand, the increase in illumination intensity resulted in increasing the shunt resistance and open circuit voltage. The study is important to understand the effective solar spectrum in producing the optimum photovoltaic performance, which can be also useful to interpret the photodetectors and photodiodes response to a specific spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li Z-S, Zhang G-Q, Li D-M, Zhou J, Li L-J, Li L-X (2007) Application and development of solar energy in building industry and its prospects in China. Energy Policy 35(8):4121–4127

    Article  Google Scholar 

  2. McEvoy AJ, Castaner L, Markvart T (2012) Solar cells: materials, manufacture and operation. Academic Press, Second Edition

  3. Muhammad FF, Yahya MY, Sulaiman K (2017) Improving the performance of solution-processed organic solar cells by incorporating small molecule acceptors into a ternary bulk heterojunction based on DH6T: Mq3: PCBM (M= Ga, Al). Mater Chem Phys 188:86–94

    Article  CAS  Google Scholar 

  4. Otte K, Makhova L, Braun A, Konovalov I (2006) Flexible cu (in, Ga) Se2 thin-film solar cells for space application. Thin Solid Films 511:613–622

    Article  Google Scholar 

  5. Muhammad FF, Sulaiman K (2018) Thermal stability and reproducibility enhancement of organic solar cells by Tris (hydroxyquinoline) gallium dopant forming a dual acceptor active layer. Aro-Sci J Koya Univ 6(2):69–78

    Google Scholar 

  6. Ahmad Z, Touati F, Muhammad FF, Najeeb MA, Shakoor R (2017) Effect of ambient temperature on the efficiency of the PCPDTBT: PC71BM BHJ solar cells. Appl Phys A 123(7):486

    Article  Google Scholar 

  7. Meneses-Rodŕiguez D, Horley PP, Gonzalez-Hernandez J, Vorobiev YV, Gorley PN (2005) Photovoltaic solar cells performance at elevated temperatures. Sol Energy 78(2):243–250

    Article  Google Scholar 

  8. Muhammad FF, Ketuly KA, Yahya MY (2018) Effect of thermal annealing on a ternary organic solar cell incorporating Gaq3 organometallic as a boosting acceptor. J Inorg Organomet Polym Mater 28(1):102–109

    Article  CAS  Google Scholar 

  9. Anani N, Ibrahim H (2020) Adjusting the single-diode model parameters of a photovoltaic module with irradiance and temperature. Energies 13(12):3226

    Article  Google Scholar 

  10. Muhammad FF, Yahya MY, Hameed SS, Aziz F, Sulaiman K, Rasheed MA, Ahmad Z (2017) Employment of single-diode model to elucidate the variations in photovoltaic parameters under different electrical and thermal conditions. PLoS One 12(8):e0182925

    Article  Google Scholar 

  11. Xiao W, Nazario G, Wu H, Zhang H, Cheng F (2017) A neural network based computational model to predict the output power of different types of photovoltaic cells. PLoS One 12(9):e0184561

    Article  Google Scholar 

  12. Sulyok G, Summhammer J (2018) Extraction of a photovoltaic cell's double-diode model parameters from data sheet values. Energy Sci Eng 6(5):424–436

    Article  Google Scholar 

  13. Muhammad FF, Karim Sangawi AW, Hashim S, Ghoshal S, Abdullah IK, Hameed SS (2019) Simple and efficient estimation of photovoltaic cells and modules parameters using approximation and correction technique. PLoS One 14(5):e0216201

    Article  Google Scholar 

  14. Muhammadsharif FF, Hashim S, Hameed SS, Ghoshal S, Abdullah IK, Macdonald J, Yahya MY (2019) Brent’s algorithm based new computational approach for accurate determination of single-diode model parameters to simulate solar cells and modules. Sol Energy 193:782–798

    Article  Google Scholar 

  15. Chegaar M, Azzouzi G, Mialhe P (2006) Simple parameter extraction method for illuminated solar cells. Solid State Electron 50(7–8):1234–1237

    Article  CAS  Google Scholar 

  16. Dawidowski W, Ściana B, Zborowska-Lindert I, Mikolášek M, Bielak K, Badura M, Pucicki D, Radziewicz D, Kováč J, Tłaczała M (2016) The influence of top electrode of InGaAsN/GaAs solar cell on their electrical parameters extracted from illuminated I–V characteristics. Solid State Electron 120:13–18

    Article  CAS  Google Scholar 

  17. Arabshahi M, Torkaman H, Keyhani A (2020) A method for hybrid extraction of single-diode model parameters of photovoltaics. Renew Energy 158:236–252

    Article  Google Scholar 

  18. Ridha HM, Heidari AA, Wang M, Chen H (2020) Boosted mutation-based Harris hawks optimizer for parameters identification of single-diode solar cell models. Energy Convers Manag 209:112660

    Article  Google Scholar 

  19. Orioli A (2020) An accurate one-diode model suited to represent the current-voltage characteristics of crystalline and thin-film photovoltaic modules. Renew Energy 145:725–743

    Article  CAS  Google Scholar 

  20. Müller B, Hardt L, Armbruster A, Kiefer K, Reise C (2016) Yield predictions for photovoltaic power plants: empirical validation, recent advances and remaining uncertainties. Prog Photovolt Res Appl 24(4):570–583

    Article  Google Scholar 

  21. Tajuddin M, Arif M, Ayob S, Salam Z (2015) Perturbative methods for maximum power point tracking (MPPT) of photovoltaic (PV) systems: a review. Int J Energy Res 39(9):1153–1178

    Article  Google Scholar 

  22. Verma D, Nema S, Shandilya A, Dash SK (2016) Maximum power point tracking (MPPT) techniques: recapitulation in solar photovoltaic systems. Renew Sust Energ Rev 54:1018–1034

    Article  Google Scholar 

  23. Duong PLT, Yang Q, Park H, Raghavan N (2019) Reliability analysis and design of a single diode solar cell model using polynomial chaos and active subspace. Microelectron Reliab 100:113477

    Article  Google Scholar 

  24. Hu X, Zou Y, Yang Y (2016) Greener plug-in hybrid electric vehicles incorporating renewable energy and rapid system optimization. Energy 111:971–980

    Article  Google Scholar 

  25. Neubauer C, Samieipour A, Oueslati S, Danilson M, Meissner D (2019) Ageing of kesterite solar cells 1: degradation processes and their influence on solar cell parameters. Thin Solid Films 669:595–599

    Article  CAS  Google Scholar 

  26. Domanski K, Alharbi EA, Hagfeldt A, Grätzel M, Tress W (2018) Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells. Nat Energy 3(1):61–67

    Article  CAS  Google Scholar 

  27. Oh W, Bae S, Kim S, Park N, Chan S-I, Choi H, Hwang H, Kim D (2019) Analysis of degradation in 25-year-old field-aged crystalline silicon solar cells. Microelectron Reliab 100:113392

    Article  Google Scholar 

  28. Gaglia AG, Lykoudis S, Argiriou AA, Balaras CA, Dialynas E (2017) Energy efficiency of PV panels under real outdoor conditions–an experimental assessment in Athens, Greece. Renew Energy 101:236–243

    Article  Google Scholar 

  29. Islam M. N., Rahman M. Z., Mominuzzaman S. M. (2014) The effect of irradiation on different parameters of monocrystalline photovoltaic solar cell. 3rd International Conference on the Developments in Renewable Energy Technology (ICDRET), Dhaka 1–6. https://doi.org/10.1109/ICDRET.2014.6861716

  30. Chander S, Purohit A, Sharma A, Nehra S, Dhaka M (2015) A study on photovoltaic parameters of mono-crystalline silicon solar cell with cell temperature. Energy Rep 1:104–109

    Article  Google Scholar 

  31. Rahman M, Hasanuzzaman M, Rahim N (2015) Effects of various parameters on PV-module power and efficiency. Energy Convers Manag 103:348–358

    Article  Google Scholar 

  32. Singh P, Ravindra NM (2012) Temperature dependence of solar cell performance—an analysis. Sol Energy Mater Sol Cells 101:36–45

    Article  CAS  Google Scholar 

  33. Tsuno Y, Hishikawa Y, Kurokawa K (2005) Temperature and irradiance dependence of the IV curves of various kinds of solar cells. Tech Digest PVSEC 15:422–423

    Google Scholar 

  34. Xiao C, Yu X, Yang D, Que D (2014) Impact of solar irradiance intensity and temperature on the performance of compensated crystalline silicon solar cells. Sol Energy Mater Sol Cells 128:427–434

    Article  CAS  Google Scholar 

  35. Zaoui F, Titaouine A, Becherif M, Emziane M, Aboubou A (2015) A combined experimental and simulation study on the effects of irradiance and temperature on photovoltaic modules. Energy Procedia 75:373–380

    Article  CAS  Google Scholar 

  36. Chaibi Y, Allouhi A, Malvoni M, Salhi M, Saadani R (2019) Solar irradiance and temperature influence on the photovoltaic cell equivalent-circuit models. Sol Energy 188:1102–1110

    Article  Google Scholar 

  37. Ibrahim H, Anani N (2017) Variations of PV module parameters with irradiance and temperature. Energy Procedia 134:276–285

    Article  Google Scholar 

  38. Yadir S, Bendaoud R, EL-Abidi A, Amiry H, Benhmida M, Bounouar S, Zohal B, Bousseta H, Zrhaiba A, Elhassnaoui A (2020) Evolution of the physical parameters of photovoltaic generators as a function of temperature and irradiance: new method of prediction based on the manufacturer’s datasheet. Energy Convers Manag 203:112141

  39. Chegaar M, Hamzaoui A, Namoda A, Petit P, Aillerie M, Herguth A (2013) Effect of illumination intensity on solar cells parameters. Energy Procedia 36:722–729

    Article  CAS  Google Scholar 

  40. Fébba D, Rubinger R, Oliveira A, Bortoni E (2018) Impacts of temperature and irradiance on polycrystalline silicon solar cells parameters. Sol Energy 174:628–639

    Article  Google Scholar 

  41. El Achouby H, Zaimi M, Ibral A, Assaid E (2018) New analytical approach for modelling effects of temperature and irradiance on physical parameters of photovoltaic solar module. Energy Convers Manag 177:258–271

    Article  Google Scholar 

Download references

Acknowledgements

Fahmi F. Muhammadsharif would like to thank Koya University for the facility supports given during the implementation of this work.

Funding

This work did not receive a financial support.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Fahmi F. Muhammadsharif; Methodology: Darya R. Ahmed, Fahmi F. Muhammadsharif; Formal analysis and investigation: Darya R. Ahmed, Ismail R. Mohammed, Haval M. Abdullah1, Fahmi F. Muhammadsharif, Khaulah Sulaiman; Writing - original draft preparation: Darya R. Ahmed1, Ismail R. Mohammed1, Haval M. Abdullah; Writing - review and editing: Fahmi F. Muhammadsharif, Khaulah Sulaiman, Mohammad S. Alsoufi, Tahani M. Bawazeer; Resources: Fahmi F. Muhammadsharif; Supervision: Fahmi F. Muhammadsharif.

Corresponding author

Correspondence to Fahmi F. Muhammadsharif.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Availability of Data and Material

The data and material are available within the manuscript.

Consent for Publication

The corresponding author transfers to Springer the non-exclusive publication rights and he warrants that the contribution is original and that he has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors. This transfer of publication rights covers the non-exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, microform, electronic form (offline, online) or any other reproductions of similar nature.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, D.R., Mohammed, I.R., Abdullah, H.M. et al. The Correlation of Device Parameters with Illumination Energy to Explore the Performance of a Monocrystalline Silicon Solar Module. Silicon 14, 1439–1445 (2022). https://doi.org/10.1007/s12633-021-00966-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-00966-z

Keywords

Navigation