Skip to main content
Log in

Electrochemical detection of dopamine using van der waals-interacted NiO–ZnO-functionalized reduced graphene oxide nanocomposite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The in situ Nickel oxide-zinc oxide-doped reduced graphene oxide (NiO–ZnO/rGO) nanocomposite is synthesized by the hydrothermal method. NiO–ZnO/rGO nanocomposite-modified glassy carbon electrode (GCE) utilized as electrochemical sensor for dopamine sensing. Scanning electron microscopy (SEM), RAMAN spectroscopy, Transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used for morphological and structural characterizations of NiO–ZnO/rGO nanocomposite. Further investigation of the redox response and the charge transfer characteristics of dopamine (DA) at NiO–ZnO/rGO-modified GCE tested using cyclic voltammetry and electrochemical impedance spectroscopy. The prepared GCE nanocomposite-modified electrochemical sensor show a linear response of redox peak current for DA in the concentration range of 0.0041–0.054 µM. The active electrochemical surface area of the sensor found to be 2.1 × 10−6 cm2, with low detection limit of 0.0076 µM and high sensitivity of 12.19 µA L cm−2 Mol−1. The constructed sensor has close to 100% recovery toward DA in voluntarily collected human urine samples. The composite exhibits good reproducibility for sensing DA for month, which is an indication of their repeatability. Also designed sensors show 123% retention current to 100 cycles of CV indicates the good stability of the sensor to DA, which are crucial for the fabrication of further devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. P. Apelgren, M. Amoroso, K. Säljö, M. Montelius, A. Lindahl, L. Stridh Orrhult, P. Gatenholm, L. Kölby, S. Arulkumar, S. Parthiban, A. Goswami, R.S. Varma, M. Naushad, M.B. Gawande, J. Lipskas, K. Deep, W. Yao, S.P. Grogan, E.W. Dorthé, N.E. Glembotski, F. Gaul, D.D. D’Lima, E.E. Beketov, E.V. Isaeva, N.D. Yakovleva, G.A. Demyashkin, N.V. Arguchinskaya, A.A. Kisel, T.S. Lagoda, E.P. Malakhov, V.I. Kharlov, E.O. Osidak, S.P. Domogatsky, S.A. Ivanov, P.V. Shegay, A.D. Kaprin, Y. Sun, Q. Wu, Y. Zhang, K. Dai, Y. Wei, A. Dhawan, P.M. Kennedy, E.B. Rizk, I.T. Ozbolat, K. Ma, T. Zhao, L. Yang, P. Wang, J. Jin, H. Teng, D. Xia, L. Zhu, L. Li, Q. Jiang, X. Wang, C. Fiscale, R. Trattamento, T. Tel, R. Della, P. Dei, D.I. Adempiere, A.D. Un, O. Di, D.A. Salvatore, Mater. Today Proc. 27, 1–31 (2019)

    Article  Google Scholar 

  2. N. Pandech, T. Kongnok, N. Palakawong, S. Limpijumnong, W.R.L. Lambrecht, S. Jungthawan, ACS Omega. 5, 25723 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. S. Lakard, I.A. Pavel, B. Lakard, Biosensors. 11, 179 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. M.O. Klein, D.S. Battagello, A.R. Cardoso, D.N. Hauser, J.C. Bittencourt, R.G. Correa, Cell. Mol. Neurobiol. 39, 31 (2019)

    Article  PubMed  Google Scholar 

  5. R.I. Teleanu, A.G. Niculescu, E. Roza, O. Vladâcenco, A.M. Grumezescu, D.M. Teleanu, Int. J. Mol. Sci. 23, 5938 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. C.H. Voon, K.L. Foo, B.Y. Lim, S.C.B. Gopinath, Y. Al-Douri, Met. Oxide Powder Technol. (2020). https://doi.org/10.1016/B978-0-12-817505-7.00003-8

    Article  Google Scholar 

  7. M.C.B.S.M. Montenegro, J. Pharm. Sci. 89, 876 (2000)

    Article  CAS  PubMed  Google Scholar 

  8. H. Zhao, H. Mu, Y. Bai, H. Yu, Y. Hu, J. Pharm. Anal. 1, 208 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. M. Tayyab, Y. Liu, Z. Liu, Z. Xu, W. Yue, L. Zhou, J. Lei, J. Zhang, Chem. Eng. J. 455, 140601 (2023)

    Article  CAS  Google Scholar 

  10. F. Bashar, K. Eddin, Sensors. 20, 1 (2020)

    Article  Google Scholar 

  11. A. Naharway, A. Hammad, A. bakr, A. Mansour,  Appl. Phy. A 126, 1–11 (2020)

    Google Scholar 

  12. M. Tayyab, Y. Liu, Z. Liu, L. Pan, Z. Xu, W. Yue, L. Zhou, J. Lei, J. Zhang, J. Colloid Inetrface Sci. 628(B), 500–512 (2022)

    Article  CAS  Google Scholar 

  13. Y.X. Gan, A.H. Jayatissa, Z. Yu, X. Chen, M. Li, Nanomaterials (2020). https://doi.org/10.1155/2020/8917013

    Article  PubMed  PubMed Central  Google Scholar 

  14. A. Elzwawy, A. Mansour, H. Magar, A. Hammad, R. Hassan, A. Nahrawy, Materialstoday Commun. 33, 104574 (2022)

    CAS  Google Scholar 

  15. K. Dhara, R.M. Debiprosad, Anal. Biochem. 586, 113415 (2019)

    Article  CAS  PubMed  Google Scholar 

  16. B. Rajeswari, K. Venkata, N. Suresh, Biointerface Res. Appl. Chem. 12, 6058 (2022)

    CAS  Google Scholar 

  17. S.A. Khayyat, S.G. Ansari, A. Umar, J. Nanosci. Nanotechnol. 14, 3569 (2014)

    Article  CAS  PubMed  Google Scholar 

  18. N.G. Mphuthi, A.S. Adekunle, O.E. Fayemi, L.O. Olasunkanmi, E.E. Ebenso, Sci. Rep. 7, 1 (2017)

    Article  Google Scholar 

  19. D. Balram, K.Y. Lian, N. Sebastian, Int. J. Electrochem. Sci. 13, 1542 (2018)

    Article  CAS  Google Scholar 

  20. O.E. Fayemi, A.S. Adekunle, J. Biosens. Bioelectron. (2015). https://doi.org/10.4172/2155-6210.1000190

    Article  Google Scholar 

  21. N. Roy, S. Yasmin, S. Jeon, Microchem. J. 153, 104501 (2020)

    Article  CAS  Google Scholar 

  22. P.N. Manikandan, V. Dharuman, Electroanalysis. 29, 1524 (2017)

    Article  CAS  Google Scholar 

  23. A. Pandikumar, G.T. Soon How, T.P. See, F.S. Omar, S. Jayabal, K.Z. Kamali, N. Yusoff, A. Jamil, R. Ramaraj, S.A. John, H.N. Lim, N.M. Huang, RSC Adv. 4, 63296 (2014)

    Article  CAS  ADS  Google Scholar 

  24. H. hashtroudi, R. kumar, R. Savu, S. Moshkalev, G. Kawamura, A. Matsuda, M. Shafiei, Int. J. Hydrog. Energy. 46, 7653–7665 (2021)

    Article  CAS  Google Scholar 

  25. D. Rana, S. Kalia, R. Kumar, N. Thakur, D. Singh, R. Singh, Mater. Chem Phy. 287, 126283 (2022)

    Article  CAS  Google Scholar 

  26. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, ACS Nano. 4, 4806 (2010)

    Article  CAS  PubMed  Google Scholar 

  27. A. Klechikov, J. Yu, D. Thomas, T. Sharifi, A.V. Talyzin, Nanoscale. 7, 15374 (2015)

    Article  CAS  PubMed  ADS  Google Scholar 

  28. M.S.A. Faiz, C.A.C. Azurahanim, S.A. Raba, M.Z. Ruzniza, Results Phys. 16, 102954 (2020)

    Article  Google Scholar 

  29. H.A.S.Y. Lye, S.M.I. Asshari, B.Y.A. Manap, J. Mater. Sci. Mater. Electron. 29, 9643 (2018)

    Article  Google Scholar 

  30. R. Kumar, S.M. Yousrry, H.M. Soe, M.M. Abdel-Galeil, G. Kawamura, A. Matsuda, J. Energy Storage. 30, 101539 (2020)

    Article  Google Scholar 

  31. S.M. Yousrry, M.N. El-Nahass, R. Kumar, I.S. El-Hallag, W.K. Tan, A. Matusda, J. Energy Storage. 30, 101485 (2020)

    Article  Google Scholar 

  32. Z. Guo, G. wang, H. Fu, P. Wang, J. Liao, A. wang, RSC Adv. 10, 26133 (2020)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  33. X. Wang, L. Zhang, Z. Zhang, A. Yu, P. Wu, Phys. Chem. Chem. Phys. 18, 3893 (2016)

    Article  CAS  PubMed  Google Scholar 

  34. N. Kaur, E. Comini, N. Poli, D. Zappa, G. Sberveglieri, Procedia Eng. 168, 1140 (2016)

    Article  CAS  Google Scholar 

  35. B.R.M. David, S. Hall, Lockwood, shawn poirier, christina bock. J. Phys. Chem. 116, 6771 (2012)

    Google Scholar 

  36. A.M. Rao, J. Chen, E. Richter, U. Schlecht, P.C. Eklund, R.C. Haddon, U.D. Venkateswaran, Y.K. Kwon, D. Tománek, Phys. Rev. Lett. 86, 3895 (2001)

    Article  CAS  PubMed  ADS  Google Scholar 

  37. P. Wang, D. Wang, M. Zhang, Y. Zhu, Y. Xu, X. Ma, X. Wang, Sens. Actuators B Chem. 230, 477 (2016)

    Article  CAS  Google Scholar 

  38. C.C. Li, Z.F. Du, L.M. Li, H.C. Yu, Q. Wan, T.H. Wang, Appl. Phys. Lett. 91, 2005 (2007)

    Google Scholar 

  39. W. Huang, S. Ding, Y. Chen, W. Hao, X. Lai, J. Peng, J. Tu, Y. Cao, X. Li, Sci. Rep. 7, 1 (2017)

    Article  Google Scholar 

  40. Z. Qu, Y. Fu, B. Yu, P. Deng, L. Xing, X. Xue, Sens. Actuators B Chem. 222, 78 (2016)

    Article  CAS  Google Scholar 

  41. A.A. Mirza, G.M. Ali, I.O.P. Conf, Ser. Mater. Sci. Eng. 870, 1 (2020)

    Google Scholar 

  42. Ş. Ulubay, Z. Dursun, Talanta. 80, 1461 (2010)

    Article  CAS  PubMed  Google Scholar 

  43. J. Gao, P. He, T. Yang, L. Zhou, X. Wang, J. Electroanal. Chem. 852, 113516 (2019)

    Article  CAS  Google Scholar 

  44. M. Cao, L. Zheng, Y. Gu, Y. Wang, H. Zhang, X. Xu, Microchem. J. 159, 105465 (2020)

    Article  CAS  Google Scholar 

  45. S. Ponnada, D. Gorle, M. Kiai, S. Rajagopal, R. Sharma, Mater. Adv. 2, 5986 (2021)

    Article  CAS  Google Scholar 

  46. J. Gaidukevic, R. Aukstakojyte, J. BArauskas, G. Niaura, Appl. Surf. Sci. 592, 153257 (2022)

    Article  CAS  Google Scholar 

  47. M. Gu, H. Xiao, S. Wei, Z. Chen, L. Cao, J. Electroanal. Chem. 908, 116117 (2022)

    Article  CAS  Google Scholar 

  48. L. Chen, S. Tian, J. Zhang, H. Zhang, L. Sheng, X. Wang, J. Fan, Res. Sq. (2023). https://doi.org/10.21203/rs.3.rs-3375395/v1

    Article  PubMed  PubMed Central  Google Scholar 

  49. T. Beatto, W. Gomes, A. Etchegaray, R. Gupta, R. Mendes, RSC Adv. 13, 33424 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. H. Sathisha, Chem. Data Collect. 48, 101081 (2023)

    Article  CAS  Google Scholar 

Download references

Funding

This research has not received any external funding.

Author information

Authors and Affiliations

Authors

Contributions

SNT conceptualized the synthesis method. GKC optimized and synthesized the NiO–ZnO/rGO composite materials under supervision of SNT and KVG. JVK, AAP and GKC characterized all the samples and also SSM and CKH characterized all the samples. AKT and GKC performed the electrochemical experiments in supervision of SNT and KKS. SNT supervised the overall research. All authors discussed and wrote the manuscript for final communication.

Corresponding authors

Correspondence to Kishor V. Gaikwad or Shivaji N. Tayade.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chougule, G.K., Tawade, A.K., Kamble, J.V. et al. Electrochemical detection of dopamine using van der waals-interacted NiO–ZnO-functionalized reduced graphene oxide nanocomposite. J Mater Sci: Mater Electron 35, 301 (2024). https://doi.org/10.1007/s10854-024-11950-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-11950-9

Navigation