Skip to main content
Log in

Using different ratios of glycine to citric acid as fuel mixture in microwave-assisted combustion synthesis of Eu-doped Y2O3–Gd2O3 nanophosphors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Y2O3–Gd2O3:Eu nanophosphors were synthesized by the commercial combustion method in the microwave oven by using different fuel mixtures of glycine and citric acid in one-step processing with no post-heat treatment. Crystal structure and phase formation of samples were examined by X-ray diffraction (XRD) method. By increasing the concentration of citric acid in the fuel mixture to 25% (citric acid to glycine ratio of 1:3), more amorphous phases were crystallized, leading to a shift in the peak position to higher 2θ values. Transmission electron microscopy (TEM) showed nanoparticles with sizes less than 30 nm. The photoluminescence (PL) properties of the nanophosphors were also investigated under UV radiation (λex = 254 nm). The major transition peaks at 590 and 614 nm were attributed to 5D0 → 7F1 magnetic dipole transition and 5D0 → 7F2 electric dipole transition, respectively. Fourier transform infrared (FTIR) curves showed absorption bands at 496, 557, and 809 cm−1 due to the vibration of Gd–O, Y–O, and Eu–O bonds. Raman spectra of the nanophosphors showed a main peak at 358 cm−1 for the rare-earth oxides. In addition to studying the fuel mixture, the charge transfer mechanism in the triple structure of Y3+, Gd3+, and Eu3+ with combined quantum-cutting phenomena is also discussed in this work for the first time. Crystallinity, homogeneity, and luminescence intensity of final products were optimized by using different glycine and citric acid fuel mixtures to control the rate of combustion. Hence, they are expected to provide a wide intense red emission for biological fluorescent labeling, high-resolution display applications, and UV-LED phosphors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The authors confirm that the generated and analyzed datasets during the study are available from the corresponding author upon request.

References

  1. P.A. Tanner, L. Fu, B.M. Cheng, J. Phys. Chem. C 113, 10773 (2009)

    Article  CAS  Google Scholar 

  2. H.A. Badehian, H. Salehi, M. Ghoohestani, J. Am. Ceram. Soc. 96, 1832 (2013)

    Article  CAS  Google Scholar 

  3. N. Dhananjaya, H. Nagabhushana, S.C. Sharma, B. Rudraswamy, C. Shivakumara, B.M. Nagabhushana, J. Alloys Compd. 587, 755 (2014)

    Article  CAS  Google Scholar 

  4. R.K. Tamrakar, D.P. Bisen, N. Brahme, J. Radiat. Res. Appl. Sci. 7, 550 (2014)

    Google Scholar 

  5. S. Som, S. Das, S. Dutta, H.G. Visser, M.K. Pandey, P. Kumar, R.K. Dubey, S.K. Sharma, RSC Adv. 5, 70887 (2015)

    Article  CAS  ADS  Google Scholar 

  6. T. Alammar, J. Cybinska, P.S. Campbell, A.V. Mudring, J. Lumin. 169, 587 (2016)

    Article  CAS  Google Scholar 

  7. A. Jain, G.A. Hirata, Ceram. Int. 42, 6428 (2016)

    Article  CAS  Google Scholar 

  8. D. Zhu, J. Li, X. Guo, Q. Li, H. Wu, L. Meng, Z. Liu, Molecules 24, 1 (2019)

    Google Scholar 

  9. F.C.B. Martins, E. Firmino, L.S. Oliveira, N.O. Dantas, A.C. Almeida Silva, H.P. Barbosa, T.K.L. Rezende, M. Sousa Góes, M.A. Coutos dos Santos, L.F. Cappa de Oliveira, J.L. Ferrari, Mater. Chem. Phys. 277, 125498 (2022)

    Article  CAS  Google Scholar 

  10. J.G. Li, X. Li, X. Sun, T. Ishigaki, J. Phys. Chem. C 112, 11707 (2008)

    Article  CAS  Google Scholar 

  11. R.G. Abhilash Kumar, S. Hata, K.I. Ikeda, K.G. Gopchandran, Ceram. Int. 40, 2915 (2014)

    Article  CAS  Google Scholar 

  12. R.G.A. Kumar, K.G. Gopchandran, IOP Conf. Ser. Mater. Sci. Eng. 73, 012108 (2015)

    Article  Google Scholar 

  13. J. Adam, W. Metzger, M. Koch, P. Rogin, T. Coenen, J.S. Atchison, P. König, Nanomaterials 7, 26 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  14. M.H. Chung, J.H. Kim, J. Korean Phys. Soc. 72, 431 (2018)

    Article  CAS  ADS  Google Scholar 

  15. N. Rakov, G.S. MacIel, J. Appl. Phys. 110, 8 (2011)

    Article  Google Scholar 

  16. S.R. Jaiswal, P.A. Nagpure, V.B. Bhatkar, S.K. Omanwar, Int. J. Lumin. Appl. 6, 131 (2016)

    Google Scholar 

  17. A.P. Jadhav, S. Khan, S.J. Kim, S.Y. Lee, J. Park, S. Cho, Res. Chem. Intermed. 43, 3463 (2017)

    Article  CAS  Google Scholar 

  18. S.K. Omanwar, S.R. Jaiswal, N.S. Sawala, K.A. Koparkar, P.A. Nagpure, V.B. Bhatkar, St. Petersbg. Polytech. Univ. J. Phys. Math. 3, 218 (2017)

    Google Scholar 

  19. P.S. Peijzel, W.J.M. Schrama, A. Meijerink, Mol. Phys. 102, 1285 (2004)

    Article  CAS  ADS  Google Scholar 

  20. R. Kumar Tamrakar, K. Upadhyay, Optik 143, 125 (2017)

    Article  ADS  Google Scholar 

  21. W. Wang, P. Zhu, Opt. Express 26, 34820 (2018)

    Article  CAS  PubMed  ADS  Google Scholar 

  22. L. Yang, S. Peng, M. Zhao, L. Yu, Appl. Surf. Sci. 473, 885 (2019)

    Article  CAS  ADS  Google Scholar 

  23. D. Nunes, A. Pimentel, M. Matias, T. Freire, A. Araújo, F. Silva, P. Gaspar, S. Garcia, P.A. Carvalho, E. Fortunato, R. Martins, Nanomaterials 9, 234 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. B. Zhou, B. Tang, C. Zhang, C. Qin, Z. Gu, Y. Ma, T. Zhai, J. Yao, Nat. Commun. 11, 1 (2020)

    Article  CAS  ADS  Google Scholar 

  25. R. Liu, Y. Zhan, L. Liu, Y. Liu, D. Tu, Opt. Mater. 100, 109633 (2020)

    Article  CAS  Google Scholar 

  26. J. Brübach, C. Pflitsch, A. Dreizler, B. Atakan, Prog. Energy Combust. Sci. 39, 37 (2013)

    Article  Google Scholar 

  27. A. Varma, A.S. Mukasyan, A.S. Rogachev, K.V. Manukyan, Chem. Rev. 116, 14493 (2016)

    Article  CAS  PubMed  Google Scholar 

  28. H.H. Nersisyan, J.H. Lee, J.R. Ding, K.S. Kim, K.V. Manukyan, A.S. Mukasyan, Prog. Energy Combust. Sci. 63, 79 (2017)

    Article  Google Scholar 

  29. D. Bovand, A.M. Arabi, M. Bovand, Boletín La Soc. Española Cerámica y Vidr. 57, 240 (2018)

    Article  Google Scholar 

  30. M. Shafiei Chafi, B. Ghasemi, A.M. Arabi, Int. J. Appl. Ceram. Technol. 15, 203 (2018)

    Article  CAS  Google Scholar 

  31. M.M. Golsheikh, A.M. Arabi, M.S. Afarani, Mater. Res. Express 6, 125052 (2019)

    Article  CAS  ADS  Google Scholar 

  32. H. Ahmadian, F.A. Hessari, A. Arabi, Ceram. Int. 45, 18778 (2019)

    Article  CAS  Google Scholar 

  33. M. Dahiya, A. Siwach, M. Dalal, D. Kumar, J. Mater. Sci. Mater. Electron. 32, 4166 (2021)

    Article  CAS  Google Scholar 

  34. H. Ahmadian, F.A. Hessari, A.M. Arabi, Prog. Color. Color. Coat. 15, 257 (2022)

    CAS  Google Scholar 

  35. L.C. Nehru, V. Swaminathan, M. Jayachandran, C. Sanjeeviraja, Mater. Sci. Forum 671, 69 (2011)

    Article  CAS  Google Scholar 

  36. S. Horikoshi, N. Serpone, Microwaves in Nanoparticle Synthesis: Fundamentals and Applications (Wiley, Hoboken, 2013)

    Book  Google Scholar 

  37. R. Rosa, L. Trombi, P. Veronesi, C. Leonelli, Int. J. Self-Propag. High-Temp. Synth. 26, 221 (2017)

    Article  Google Scholar 

  38. E. Mohammadi, M. Aliofkhazraei, M. Hasanpoor, M. Chipara, Crit. Rev. Solid State Mater. Sci. 43, 475 (2018)

    Article  CAS  ADS  Google Scholar 

  39. S. Rasouli, A.M. Arabi, A. Naeimi, S.M. Hashemi, J. Fluoresc. 28, 167 (2018)

    Article  CAS  PubMed  Google Scholar 

  40. Z. Ghahramani, A.M. Arabi, M. Shafiee Afarani, M. Mahdavian, Int. J. Appl. Ceram. Technol. 17, 1514 (2020)

    Article  CAS  Google Scholar 

  41. C.J. Shilpa, N. Dhananjaya, H. Nagabhushana, S.C. Sharma, C. Shivakumara, K.H. Sudheerkumar, B.M. Nagabhushana, R.P.S. Chakradhar, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 128, 730 (2014)

    Article  CAS  ADS  Google Scholar 

  42. V. Mote, Y. Purushotham, B. Dole, J. Theor. Appl. Phys. 6, 6 (2012)

    Article  ADS  Google Scholar 

  43. R.M. Chellab, K.H. Harbbi, AIP Conf. Proc. 2123, 020044 (2019)

    Article  Google Scholar 

  44. S. Ilyas, B.A. Heryanto, D. Tahir, Nano-Struct. Nano-Objects 20, 100396 (2019)

    Article  CAS  Google Scholar 

  45. D. Nath, F. Singh, R. Das, Mater. Chem. Phys. 239, 122021 (2020)

    Article  CAS  Google Scholar 

  46. S.K. Abdel-Aal, A.S. Abdel-Rahman, J. Nanopart. Res. (2020). https://doi.org/10.1007/s11051-020-05001-7

    Article  Google Scholar 

  47. S.K. Abdel-Aal, M.F. Kandeel, A.F. El-Sherif, A.S. Abdel-Rahman, Phys. Status Solidi Appl. Mater. Sci. 218, 1 (2021)

    Google Scholar 

  48. X. Ye, W. Gao, L. Xia, H. Nie, W. Zhuang, J. Rare Earths 28, 345 (2010)

    Article  CAS  Google Scholar 

  49. B. Antic, J. Rogan, A. Kremenovic, A.S. Nikolic, M. Vucinic-Vasic, D.K. Bozanic, G.F. Goya, P. Colomban, Nanotechnology 21, 245702 (2010)

    Article  CAS  PubMed  ADS  Google Scholar 

  50. S. Som, S.K. Sharma, T. Shripathi, J. Fluoresc. 23, 439 (2013)

    Article  CAS  PubMed  Google Scholar 

  51. Z. Zhou, A. Navrotsky, J. Mater. Res. 7, 2920 (1992)

    Article  CAS  ADS  Google Scholar 

  52. J.A. Teixeira, W.D.G. Nunes, A.L.C.S. Do Nascimento, T.A.D. Colman, F.J. Caires, D.A. Gálico, M. Ionashiro, J. Anal. Appl. Pyrolysis 121, 267 (2016)

    Article  CAS  Google Scholar 

  53. K. Vini, H.P. Kumar, K.M. Nissamudeen, J. Mater. Sci. Mater. Electron. 31, 5653 (2020)

    Article  CAS  Google Scholar 

  54. K. Vini, K.M. Nissamudeen, Zeitschrift Für Naturforsch. A 75, 357 (2020)

    Article  CAS  ADS  Google Scholar 

  55. H. Razavi-Khosroshahi, K. Edalati, H. Emami, E. Akiba, Z. Horita, M. Fuji, Inorg. Chem. 56, 2576 (2017)

    Article  CAS  PubMed  Google Scholar 

  56. J.J. Velázquez, J. Mosa, G. Gorni, R. Balda, J. Fernández, L. Pascual, A. Durán, Y. Castro, J. Sol-Gel Sci. Technol. 89, 322 (2019)

    Article  Google Scholar 

  57. V.B. Pawade, H.C. Swart, S.J. Dhoble, Renew. Sustain. Energy Rev. 52, 596 (2015)

    Article  CAS  Google Scholar 

  58. L.G. Jacobsohn, S.C. Tornga, B.L. Bennett, R.E. Muenchausen, O. Ugurlu, T.K. Tseng, J. Choi, P.H. Holloway, Radiat. Meas. 45, 611 (2010)

    Article  CAS  Google Scholar 

  59. M. Sun, J. Liu, L. Nie, J. Alloys Compd. 816, 152575 (2020)

    Article  CAS  Google Scholar 

  60. Y. Kumar, M. Pal, M. Herrera, X. Mathew, Opt. Mater. 60, 159 (2016)

    Article  CAS  ADS  Google Scholar 

  61. S.V. Rodríguez, E.G. Villabona-Leal, J.C. Mixteco-Sánchez, V.H. Romero, H. Desirena, E. Perez, U. Salazar-Kuri, O. Meza, J. Sol-Gel Sci. Technol. 86, 782 (2018)

    Article  Google Scholar 

  62. D. Kumar, A. Dwivedi, M. Srivastava, A. Srivastava, A. Srivastava, S.K. Srivastava, Optik 228, 166130 (2021)

    Article  CAS  ADS  Google Scholar 

  63. O. Meza, E.G. Villabona-Leal, L.A. Diaz-Torres, H. Desirena, J.L. Rodríguez-López, E. Pérez, J. Phys. Chem. A 118, 1390 (2014)

    Article  CAS  PubMed  Google Scholar 

  64. V. Dubey, S. Agrawal, J. Kaur, Optik 126, 1 (2015)

    Article  CAS  ADS  Google Scholar 

  65. R.K. Tamrakar, D.P. Bisen, K. Upadhyay, M. Sahu, I.P. Sahu, N. Bramhe, Superlattices Microstruct. 88, 382 (2015)

    Article  CAS  ADS  Google Scholar 

  66. R.T. Wegh, H. Donker, K.D. Oskam, A. Meijerink, Science 283, 663 (1999)

    Article  CAS  PubMed  ADS  Google Scholar 

  67. R. Hua, J. Niu, B. Chen, M. Li, T. Yu, W. Li, Nanotechnology 17, 1642 (2006)

    Article  CAS  PubMed  ADS  Google Scholar 

  68. N. Kodama, Y. Watanabe, Appl. Phys. Lett. 84, 4141 (2004)

    Article  CAS  ADS  Google Scholar 

  69. D. Wang, N. Kodama, J. Solid State Chem. 182, 2219 (2009)

    Article  CAS  ADS  Google Scholar 

  70. P.A. Tanner, K.L. Wong, J. Phys. Chem. B 108, 136 (2004)

    Article  CAS  Google Scholar 

  71. G. Ju, Y. Hu, L. Chen, X. Wang, Z. Mu, H. Wu, F. Kang, J. Lumin. 132, 1853 (2012)

    Article  CAS  Google Scholar 

  72. P. Deshmukh, S. Satapathy, A. Ahlawat, K. Sahoo, P.K. Gupta, Adv. Mater. Lett. 8, 458 (2017)

    Article  CAS  Google Scholar 

  73. M. Karbowiak, E. Zych, J. Hls, J. Phys. Condens. Matter 15, 2169 (2003)

    Article  CAS  ADS  Google Scholar 

  74. M. Jia, J. Zhang, S. Lu, J. Sun, Y. Luo, X. Ren, H. Song, X.J. Wang, Chem. Phys. Lett. 384, 193 (2004)

    Article  CAS  ADS  Google Scholar 

  75. M. Yang, Y. Sui, S. Wang, X. Wang, Y. Wang, S. Lü, T. Lü, W. Liu, J. Alloys Compd. 509, 266 (2011)

    Article  CAS  Google Scholar 

  76. B.M. Van Der Ende, L. Aarts, A. Meijerink, Phys. Chem. Chem. Phys. 11, 11081 (2009)

    Article  PubMed  Google Scholar 

  77. X. Huang, S. Han, W. Huang, X. Liu, Chem. Soc. Rev. 42, 173 (2013)

    Article  CAS  PubMed  Google Scholar 

  78. Q.C. Sun, Y.C. Ding, D.M. Sagar, P. Nagpal, Prog. Surf. Sci. 92, 281 (2017)

    Article  CAS  ADS  Google Scholar 

  79. X. Cheng, L. Su, Y. Wang, X. Zhu, X. Wei, Y. Wang, Opt. Mater. 34, 1102 (2012)

    Article  CAS  ADS  Google Scholar 

  80. R. Priya, O.P. Pandey, S.J. Dhoble, Opt. Laser Technol. 135, 106663 (2021)

    Article  CAS  Google Scholar 

  81. Z. Xu, J. Yang, Z. Hou, C. Li, C. Zhang, S. Huang, J. Lin, Mater. Res. Bull. 44, 1850 (2009)

    Article  CAS  Google Scholar 

  82. R.G.A. Kumar, S. Hata, K.G. Gopchandran, Ceram. Int. 39, 9125 (2013)

    Article  CAS  Google Scholar 

  83. C. Esther Jeyanthi, R. Siddheswaran, P. Kumar, M. Karl Chinnu, K. Rajarajan, R. Jayavel, Mater. Chem. Phys. 151, 22 (2015)

    Article  CAS  Google Scholar 

  84. B. Vitale, R.F. Speyer, (Georgia Tech Library Web). http://hdl.handle.net/1853/56184. Accessed 16 Oct 2015

  85. W. He, Y. Xie, Q. Xing, P. Ni, Y. Han, H. Dai, J. Lumin. 192, 902 (2017)

    Article  CAS  Google Scholar 

  86. J. Pironon, M. Pelletier, P. De Donato, R. Mosser-Ruck, Clay Miner. 38, 201 (2003)

    Article  CAS  ADS  Google Scholar 

  87. S. Som, S.K. Sharma, J. Phys. D Appl. Phys. 45, 415102 (2012)

    Article  Google Scholar 

  88. R.K. Tamrakar, D.P. Bisen, K. Upadhyay, I.P. Sahu, Radiat. Meas. 84, 41 (2016)

    Article  CAS  Google Scholar 

  89. T. Verma, S. Agrawal, J. Mater. Sci. Mater. Electron. 29, 7832 (2018)

    Article  CAS  Google Scholar 

  90. S.K. Abdel-Aal, A.S. Abdel-Rahman, W.M. Gamal, M. Abdel-Kader, H.S. Ayoub, A.F. El-Sherif, M.F. Kandeel, S. Bozhko, E.E. Yakimov, E.B. Yakimov, Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 75, 880 (2019)

    Article  CAS  ADS  Google Scholar 

  91. M.F. Kandeel, S.K. Abdel-Aal, A.F. El-Sherif, H.S. Ayoub, A.S. Abdel-Rahman, IOP Conf. Ser. Mater. Sci. Eng. 610, 012063 (2019)

    Article  CAS  Google Scholar 

  92. N. Dilawar, S. Mehrotra, D. Varandani, B.V. Kumaraswamy, S.K. Haldar, A.K. Bandyopadhyay, Mater Charact 59, 462 (2008)

    Article  CAS  Google Scholar 

  93. M.V. Abrashev, N.D. Todorov, J. Geshev, J. Appl. Phys. (2014). https://doi.org/10.1063/1.4894775

    Article  Google Scholar 

  94. S. Hazarika, D. Mohanta, Radiat. Eff. Defects Solids 171, 925 (2016)

    Article  CAS  ADS  Google Scholar 

  95. G. Yuan, M. Li, M. Yu, C. Tian, G. Wang, H. Fu, Sci. Rep. 6, 37133 (2016)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  96. S.A. Vieira, N. Rakov, C.B. de Araújo, E.L. Falcão-Filho, Opt. Mater. Express 9, 3952 (2019)

    Article  CAS  ADS  Google Scholar 

  97. D. Kumar, S. Umrao, H. Mishra, R.R. Srivastava, M. Srivastava, A. Srivastava, S.K. Srivastava, Sens. Actuators B Chem. 247, 170 (2017)

    Article  CAS  Google Scholar 

  98. J.R. Ferraro, K. Nakamoto, C.W. Brown, Introductory Raman Spectroscopy (Elsevier, Amsterdam, 2003)

    Google Scholar 

  99. P. Larkin, Infrared and Raman Spectroscopy: Principles and Spectral Interpretation (Elsevier, Amsterdam, 2011)

    Google Scholar 

Download references

Funding

This work was not received any kind of grant.

Author information

Authors and Affiliations

Authors

Contributions

AMA is supervisor of research, where Dr FAH is co-supervisor of the work in whose lab practical work has been done. Mr HA has conducted the experiments and analyzed the data of the work critically and analyzed luminescent materials. Dr AMA finalized the manuscript scientifically and literary.

Corresponding authors

Correspondence to F. A. Hessari or A. M. Arabi.

Ethics declarations

Conflict of interest

There is no conflict of interest among authors.

Ethical approval

All authors have seen and approved the manuscript being submitted and have no conflict of interest. They affirm that the manuscript submitted has been prepared according to the Journal’s instruction, and the content of the manuscript has not been published in any refereed journal.

Consent to participate and publish

The authors give consent to publish our work of the luminescent materials studies that is jointly contributed by all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadian, H., Hessari, F.A. & Arabi, A.M. Using different ratios of glycine to citric acid as fuel mixture in microwave-assisted combustion synthesis of Eu-doped Y2O3–Gd2O3 nanophosphors. J Mater Sci: Mater Electron 35, 274 (2024). https://doi.org/10.1007/s10854-024-11922-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-11922-z

Navigation