Skip to main content
Log in

BNH doping enhances the piezoelectric properties and temperature stability of KNN-based lead-free piezoelectric ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

KNN-based ceramics have gained considerable attention due to their excellent performances, cost-effectiveness, and potential applications in transducers. In order to accelerate the piezoelectric performances and temperature reliability of KNN-based ceramics, (1 − x)(K0.48Na0.52)(Nb0.955Sb0.045)O3 − x(Bi0.5Na0.5)HfO3 (abbreviated as KNNS-xBNH) ceramics were prepared. The study focused on investigating the impact of BNH components on their morphology, structure, piezoelectric performances, and temperature reliability of ceramics. This route is crucial for improving the overall performance of KNN-based ceramics. The synthetic piezoelectric ceramics have a typical perovskite structure, in which the optimized ceramic with x = 0.035 shows excellent piezoelectric properties: d33 = 436 pC/N, kp = 0.56, d33* = 604 pm/V, Tc = 253 °C, Pr = 14.75 μC/cm2, Ec = 957 V/mm, and Smax = 0.18%. The co-occurrence of orthorhombic–tetragonal (O–T) phase, relaxation states, and their nanodomain structures contribute significantly to the excellent performance of ceramics with TFs < 0.8‰ and Tεr < 17‰. At the same time, it is verified that the presence of B-site defect dipoles in ceramics has an inactive effect on spontaneous polarization, which is evident in the decrease of d33* measured after polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable.

References

  1. E. Aksel, J.L. Jones, Advances in lead-free piezoelectric materials for sensors and actuators. Sensors 10(3), 1935–1954 (2010)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  2. X. Dingquan, Progresses and furthe considerations on the research of perovskite lead-free piezoelectric ceramics. J. Adv. Dielectr. 1(1), 33–40 (2011)

    Article  Google Scholar 

  3. E. Pakizeh, Optical response and structural properties of Fe-doped Pb(Zr0.52Ti0.48)O3 nanopowders. J. Mater. Sci.: Mater. Electron. 31(6), 4872–4881 (2020)

    CAS  Google Scholar 

  4. E. Pakizeh, M. Moradi, Effect of particle size on the optical properties of lead zirconate titanate nanopowders. J. Am. Ceram. Soc. 101(12), 5335–5345 (2018)

    Article  CAS  Google Scholar 

  5. E. Pakizeh, M. Moradi, Kramers-Kronig method for determination of optical properties of PZT nanotubes fabricated by sol–gel method and porous anodic alumina with high aspect ratio. Int. J. Mod. Phys. B 32(08), 1850096 (2018)

    Article  CAS  ADS  Google Scholar 

  6. E. Pakizeh, M. Moradi, A. Ahmadi, Effect of sol–gel pH on XRD peak broadening, lattice strain, ferroelectric domain orientation, and optical bandgap of nanocrystalline Pb1.1(Zr0.52Ti0.48)O3. J. Phys. Chem. Solids 75(2), 174–181 (2014)

    Article  CAS  ADS  Google Scholar 

  7. J. Rdel, K.G. Webber, R. Dittmer, W. Jo, D. Damjanovic, Transferring lead-free piezoelectric ceramics into application. J. Eur. Ceram. Soc. 35(6), 1659–1681 (2015)

    Article  Google Scholar 

  8. L. Wu, J.L. Zhang, C.L. Wang, J.C. Li, Influence of compositional ratio K/Na on physical properties in (KxNa(1–x))NbO3 ceramics. J. Appl. Phys. 103(8), 883–887 (2008)

    Article  Google Scholar 

  9. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics. Nature 432(7013), 84–87 (2004)

    Article  CAS  PubMed  ADS  Google Scholar 

  10. L. Liu, H. Fan, L. Fang, X. Chen, H. Dammak, M.P. Thi, Effects of Na/K evaporation on electrical properties and intrinsic defects in Na0.5K0.5NbO3 ceramics. Mater. Chem. Phys. 117(1), 138–141 (2009)

    Article  CAS  Google Scholar 

  11. Z. Liu, H. Fan, S. Lei, X. Ren, C. Long, Duplex structure in K0.5Na0.5NbO3-SrZrO3 ceramics with temperature-stable dielectric properties. J. Eur. Ceram. Soc. 37(1), 115–122 (2017)

    Article  Google Scholar 

  12. Z. Liu, H. Fan, Y. Zhao, G. Dong, Optical and tunable dielectric properties of K0.5Na0.5NbO3 –SrTiO3 ceramics. J. Am. Ceram. Soc. 99(1), 146–151 (2016)

    Article  CAS  Google Scholar 

  13. C. Long, T. Li, H. Fan, Y. Wu, L. Zhou, Y. Li, L. Xiao, Y. Li, Li-substituted K 0.5 Na 0.5 NbO 3 -based piezoelectric ceramics: crystal structures and the effect of atmosphere on electrical properties. J. Alloys Compds. 658, 839–847 (2016)

    Article  CAS  Google Scholar 

  14. Q. Quan, H. Fan, Q. Shen, Y. Jia, H. Wang, A. Zhang, D. Hou, W. Wang, Q. Li, Large electrostrictive effect and dielectric properties of (K0.5Na0.5)NbO3-BaZrO3 ceramics. J. Eur. Ceram. Soc. 42(5), 2195–2203 (2022)

    Article  CAS  Google Scholar 

  15. Y. Gao, J. Zhang, Y. Qing, Y. Tan, Z. Zhang, X. Hao, Remarkably strong piezoelectricity of lead-free (K0.45Na0.55)0.98Li0.02(Nb0.77Ta0.18Sb0.05)O3 ceramic. J. Am. Ceram. Soc. 94(9), 2968–2973 (2011)

    Article  CAS  Google Scholar 

  16. Y. Guo, K.I. Kakimoto, H. Ohsato, Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3-LiNbO3 ceramics. Appl. Phys. Lett. 85(18), 4121–4123 (2004)

    Article  CAS  ADS  Google Scholar 

  17. X. Wang, J. Wu, D. Xiao, J. Zhu, X. Cheng, T. Zheng, B. Zhang, X. Lou, X. Wang, Giant piezoelectricity in potassium-sodium niobate lead-free ceramics. J. Am. Chem. Soc. 136(7), 2905–2910 (2014)

    Article  CAS  PubMed  Google Scholar 

  18. B. Zhang, J. Wu, X. Cheng, X. Wang, D. Xiao, J. Zhu, X. Wang, X. Lou, Lead-free piezoelectrics based on potassium-sodium niobate with giant d33. ACS Appl. Mater. Interfaces 5(16), 7718–7725 (2013)

    Article  CAS  PubMed  Google Scholar 

  19. J.-S. Zhou, K. Wang, F.-Z. Yao, T. Zheng, J. Wu, D. Xiao, J. Zhu, J.-F. Li, Multi-scale thermal stability of niobate-based lead-free piezoceramics with large piezoelectricity. J. Mater. Chem. C 3(34), 8780–8787 (2015)

    Article  CAS  Google Scholar 

  20. X. Cheng, J. Wu, X. Wang, B. Zhang, J. Zhu, D. Xiao, X. Wang, X. Lou, Giant d33 in (K, Na)(Nb, Sb)O3-(Bi, Na, K, Li)ZrO3 based lead-free piezoelectrics with high Tc. Appl. Phys. Lett. 103(5), 052906 (2013)

    Article  ADS  Google Scholar 

  21. K. Xu, J. Li, X. Lv, J. Wu, X. Zhang, D. Xiao, J. Zhu, Superior piezoelectric properties in potassium-sodium niobate lead-free ceramics. Adv. Mater. 28(38), 8519–8523 (2016)

    Article  CAS  PubMed  Google Scholar 

  22. D.N. Setter, Temperature stability of the piezoelectric properties of Li-modified KNN ceramics. J. Eur. Ceram. Soc. 27(13–15), 4093–4097 (2007)

    Google Scholar 

  23. J. Wu, D. Xiao, J. Zhu, Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem. Rev. 115(7), 25C (2015)

    Article  Google Scholar 

  24. S. Zhang, R. Xia, T.R. Shrout, G. Zang, J. Wang, Piezoelectric properties in perovskite 0.948(K0.5Na0.5)NbO30.052LiSbO3 lead-free ceramics. J. Appl. Phys. 100(10), 104108 (2006)

    Article  ADS  Google Scholar 

  25. Y. Lin, R. Wang, J. Qu, S. Gao, Y. Zhang, J. Yan, J. Hao, P. Li, W. Li, Enhanced piezoelectric properties and temperature stability in KNN-based textured ceramics. J. Adv. Dielectrics. 12(05), 2244006 (2022)

    Article  CAS  ADS  Google Scholar 

  26. Akbari, M.; Heidarian, a.; Shokrollahi, H.; mirzaee, o. J. P. S., Ho-Mn co-doping in barium titanate piezoceramics via sol-gel process followed by microwave and conventional heating. 2023.

  27. Wen, Y.; Fan, G.; Hao, M.; Wang, Y.; Chen, X.; Zhang, Q.; Lv, W. J. J. o. E. M., Balanced Development of Piezoelectricity and Curie Temperature in KNN-BC-xBNH Lead-Free Ceramics. 2020, 49, 931–936.

  28. X. Pang, J. Qiu, K. Zhu, J. Du, (K, Na)NbO3-based lead-free piezoelectric ceramics manufactured by two-step sintering. Ceram. Int. 38(3), 2521–2527 (2012)

    Article  CAS  Google Scholar 

  29. C.J. Wang, C.Y. Huang, Y.C. Wu, Two-step sintering of fine alumina–zirconia ceramics. Ceram. Int. 35(4), 1467–1472 (2009)

    Article  CAS  Google Scholar 

  30. J. Zhang, Y. Qin, Y. Gao, Improvement of physical properties for KNN-based ceramics by modified two-step sintering. J. Am. Ceram. Soc. 97(3), 759–764 (2014)

    Article  CAS  Google Scholar 

  31. J. Yang, Z. Gao, Y. Liu, Z. Xiong, F. Zhang, Z. Fu, F. Xu, X. Chen, Q. Yang, L. Fang, Time dependence of domain structures in potassium sodium niobate-based piezoelectric ceramics. Rsc. Adv. 11(33), 20057–20062 (2021)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  32. X. Sun, J. Zhang, X. Lv, X. Zhang, J. Wu, Understanding the piezoelectricity of high-performance potassium sodium niobate ceramics from diffused multi-phase coexistence and domain feature. J. Mater. Chem. A 7(28), 16803–16811 (2019)

    Article  CAS  Google Scholar 

  33. A. Denis, T. Anton, K. Andrei, S. Vladimir, Ferroelectric domain structure and local piezoelectric properties of lead-free (Ka0.5Na0.5)NbO3 and BiFeO3-based piezoelectric ceramics. Materials 10(1), 47 (2017)

    Article  Google Scholar 

  34. Z. Jiang, J. Huang, R. Yuan, N.A. Xu, Y. Jiang, J. Zhang, F. Zhang, J. Xing, H. Gu, D. Fu, Phase evolution and local piezoelectric response of Sn-doped BaTiO3 ceramics. Physica Status Solidi A. 219(21), 2200344 (2022)

    Article  CAS  ADS  Google Scholar 

  35. P. Jia, Z. Zheng, Y. Li, Z. Li, T. Liu, Y. Wang, The achieving enhanced piezoelectric performance of KNN-based ceramics: decisive role of multi-phase coexistence induced by lattice distortion. J. Alloys Compds. 930, 167416 (2023)

    Article  CAS  Google Scholar 

  36. X. Lv, J. Wu, J. Zhu, D. Xiao, X. Zhangb, A new method to improve the electrical properties of KNN-based ceramics: tailoring phase fraction. J. Eur. Ceram. Soc. 38(1), 85–94 (2017)

    Article  CAS  Google Scholar 

  37. J. Xing, H. Chen, L. Jiang, C. Zhao, J. Zhu, High performance BiFe0.9Co0.1O3 doped KNN-based lead-free ceramics for acoustic energy harvesting. Nano Energy 84(8), 105900 (2021)

    Article  CAS  Google Scholar 

  38. P. Jia, Z. Zheng, Y. Li, Z. Li, T. Liu, Y. Wang, The achieving enhanced piezoelectric performance of KNN-based ceramics: decisive role of multi-phase coexistence induced by lattice distortion. J. Alloys Compd. 930, 167416 (2023)

    Article  CAS  Google Scholar 

  39. B. Orayech, A. Faik, G.A. Lopez, O. Fabelo, J.M. Igartua, Mode-crystallography analysis of the crystal structures and the low- and high-temperature phase transitions in Na0.5K0.5NbO3. J. Appl. Crystallogr. 48, 318–333 (2015)

    Article  CAS  ADS  Google Scholar 

  40. L. Tan, Y. Wang, Phase evolution and associated electrical properties of Al-doped KNN–Bi0.5Na0.5ZrO3 lead-free piezoelectric ceramics. J. Phys. Chem. Solids. 151, 109797 (2021)

    Article  Google Scholar 

  41. Moure, A.; Val-Gómez, P.; del Campo, A.; Fernández, J. F.; Rubio-Marcos, F. J. M.; Design, Stress dynamics during OT phase transitions in lead-free KNN-based piezoelectric ceramics. 2023, 112123.

  42. H. Tao, J. Wu, Giant piezoelectric effect and high strain response in (1–x)(K0.45Na0.55)(Nb1-ySby)O3 -xBi0.5Na0.5Zr1-zHfzO3 lead-free ceramics. J. Eur. Ceram. Soc. 36(7), 1605–1612 (2016)

    Article  CAS  Google Scholar 

  43. D. Xue, Y. Liu, M. Shi, P. Wang, L. Zhang, G. Liu, Z. Chen, Y. Chen, Composition dependence of phase structure and piezoelectric properties in (0.98–x)(K0.4Na0.6)NbO3–0.02CaZrO3–xBi0.5Na0.5HfO3 ternary ceramics. J. Mater. Sci.: Mater. Electron. 29, 2072–2079 (2018)

    CAS  Google Scholar 

  44. J. Jiang, H. Li, C. Zhao, C. Lin, X. Wu, T. Lin, M. Gao, Z. Wang, Broad-temperature-span and improved piezoelectric/dielectric properties in potassium sodium niobate-based ceramics through diffusion phase transition. J. Alloys Compd. 925, 166708 (2022)

    Article  CAS  Google Scholar 

  45. Z. Wang, J.G. Wu, M. Xiao, D.Q. Xiao, T. Huang, B. Wu, F.X. Li, J.G. Zhu, Phase transition and electrical properties of (1–x) K0.5Na0.5NbO3–xBi0.5Na0.5Zr0.8Ti0.2O3 lead-free piezoceramics. Ceram. Int. 40(7), 9165–9169 (2014)

    Article  CAS  Google Scholar 

  46. Y. Liu, B. Shen, J. Fan, X. Qi, E. Sun, R. Zhang, Dynamic hysteresis relation for guiding poling condition of high-performance KNN-based ceramics. J. Eur. Ceram. Soc. 43(9), 4044–4050 (2023)

    Article  CAS  Google Scholar 

  47. X. Lv, J. Wu, X.X. Zhang, A new concept to enhance piezoelectricity and temperature stability in KNN ceramics. Chem. Eng. J. 402, 126215 (2020)

    Article  CAS  Google Scholar 

  48. F.-Z. Yao, K. Wang, W. Jo, K.G. Webber, T.P. Comyn, J.-X. Ding, B. Xu, L.-Q. Cheng, M.-P. Zheng, Y.-D. Hou, J.-F. Li, Diffused phase transition boosts thermal stability of high-performance lead-free piezoelectrics. Adv. Func. Mater. 26(8), 1217–1224 (2016)

    Article  CAS  Google Scholar 

  49. Z. Cen, F. Cao, M. Feng, Z. Li, Z. Xu, G. Luo, N. Luo, K. Xie, L. Li, X. Wang, Simultaneously improving piezoelectric strain and temperature stability of KNN-based ceramics via defect design. J. Eur. Ceram. Soc. 43(3), 939–946 (2023)

    Article  CAS  Google Scholar 

  50. J. Liao, X. Lv, X.X. Sun, J. Li, H. Wang, Q. Chen, H. Lu, D. Wang, J. Bi, J. Wu, Boosting piezo-catalytic activity of KNN-based materials with phase boundary and defect engineering. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202303637

    Article  Google Scholar 

  51. G. Lee, B. Kim, Effects of thermal aging on temperature stability of Pb(ZryTi1-y)O3 + x(wt.%)Cr2O3 ceramics. Mater. Chem. Phys 91(1), 233–236 (2005)

    Article  CAS  Google Scholar 

  52. C.K. Liang, L. Wu, T.S. Wu, Temperature stability of resonant-frequency of ternary PZT ceramics at the MPB by variation of sintering and poling treatment. Ferroelectrics 120(1), 185–195 (1991)

    Article  CAS  ADS  Google Scholar 

Download references

Funding

This work was supported by the Key Research and Develop Projects in Gansu Province (No. 23YFGA0002), the Natural Science Foundation of Gansu Province (Grant Nos. 20JR5RA303, 20JR10RA648 and 23JRRA1109) and the Gansu Province Education Science and Technology Innovation Young Doctor Fund (2022QB-002).

Author information

Authors and Affiliations

Authors

Contributions

BL conducted experiments, data testing and analysis, and wrote the manuscript. DG provided the idea of the study. CX provided data curation. GG provided data curation.

Corresponding author

Correspondence to Daqiang Gao.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 1590 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Xiong, C., Gao, G. et al. BNH doping enhances the piezoelectric properties and temperature stability of KNN-based lead-free piezoelectric ceramics. J Mater Sci: Mater Electron 35, 153 (2024). https://doi.org/10.1007/s10854-023-11845-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11845-1

Navigation