Skip to main content
Log in

Adsorptive separation of food and textile dyes from aqueous solution by SBA-15 supported polyaniline/polypyrrole composite: isotherms, kinetics, thermodynamics and recyclability study

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The copolymerization of aniline and pyrrole in the presence of SBA-15 resulted in the formation of the SBA-15/PANI/PPy composite. Low-angle and wide-angle X-ray diffraction (XRD), Fourier transformed infra-red spectroscopy (FT-IR), Field emission scanning electron microscopy (FESEM), Thermo gravimetric analysis (TGA), High resolution transmission electron microscopy (HRTEM) and Brunauer–Emmett–Teller (BET) analysis were used to characterize the materials. The effects of pH, adsorbent amount, dye concentration, contact time and temperature on the removal of sunset yellow, indigo carmine, titan yellow and orange G dyes from aqueous solutions were investigated using adsorption techniques. From the low-angle XRD analysis, the peaks confirm the formation of a mesoporous SBA-15 (p6mm, hexagonal) structure. From FT-IR analysis, the peaks at 1568, 1492 and 1399 cm−1 are attributed to the C=C pyrrole ring and C–N stretching vibrations of aniline. The FESEM image of SBA-15 reveals that the structure exhibits a worm-like, folded morphology. The HRTEM image of the SBA-15/PANI/PPy composite showed that the mesopores are arranged in an orderly manner. Additionally, there are dark spots on it as a result of the polypyrrole and polyaniline being present. All of the dyes were removed with efficiency higher than 95%. The isotherm was confirmed to match the Langmuir isotherm model because the R2 value for all dyes was greater than 0.99. Sunset yellow, indigo carmine, titan yellow, and orange G had maximum adsorption capacities of 476.19, 384.61, 500.00 and 625.00 mg/g, respectively. The adsorption kinetics followed a pseudo-second-order model and the R2 value for all dyes was greater than 0.99. The thermodynamic parameters ΔG°, ΔS° and ΔH° all had negative values, indicating that the adsorption was spontaneous, decreased entropy, and exothermic. For five cycles, the SBA-15/PANI/PPy composite showed a 95% removal efficiency of dyes. Therefore, the prepared adsorbent can be used to clean industrial effluents that contain dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this manuscript.

References

  1. M. Bhaumik, R. McCrindle, A. Maity, Efficient removal of Congo red from aqueous solutions by adsorption onto interconnected polypyrrole–polyaniline nanofibres. Chem. Eng. J. 228, 506–515 (2013)

    CAS  Google Scholar 

  2. N. Aarab, A. Hsini, A. Essekri, M. Laabd, R. Lakhmiri, A. Albourine, Removal of an emerging pharmaceutical pollutant (metronidazole) using PPY-PANi copolymer: kinetics, equilibrium and DFT identification of adsorption mechanism. Groundw. Sustain. Dev. 11, 100416 (2020)

    Google Scholar 

  3. B. Madhumita, A. Maity, V.V. Srinivasu, M.S. Onyango, Removal of hexavalent chromium from aqueous solution using polypyrrole-polyaniline nanofibers. Chem. Eng. J. 181, 323–333 (2012)

    Google Scholar 

  4. W. Huang, S. Wang, D. Li, Polymers and polymer composites for adsorptive removal of dyes in water treatment, in Sustainable polymer composites and nanocomposites. ed. by S. Inamuddin Thomas, R. Kumar Mishra, A. Asiri (Springer, Cham, 2019)

    Google Scholar 

  5. A. Khadir, M. Negarestani, H. Ghiasinejad, Low-cost sisal fibers/polypyrrole/polyaniline biosorbent for sequestration of reactive orange 5 from aqueous solutions. J. Environ. Chem. Eng. 8, 103956 (2020)

    CAS  Google Scholar 

  6. H. Yongshun, J. Li, X. Chen, X. Wang, Applications of conjugated polymer based composites in wastewater purification. RSC Adv. 4(107), 62160–62178 (2014)

    Google Scholar 

  7. H. Javadian, Application of kinetic, isotherm and thermodynamic models for the adsorption of Co (II) ions on polyaniline/polypyrrole copolymer nanofibers from aqueous solution. J. Ind. Eng. Chem. 20(6), 4233–4241 (2014)

    CAS  Google Scholar 

  8. D. Soumi, S.K. Srivastava, A.K. Gupta, Polypyrrole–polyaniline copolymer coated green rice husk ash as an effective adsorbent for the removal of hexavalent chromium from contaminated water. Mater. Adv. 2(7), 2431–2443 (2021)

    Google Scholar 

  9. M. Janmohammadi, M. Baghdadi, T.M. Adyel, N. Mehrdadi, Waste plastic filter modified with polyaniline and polypyrrole nanoparticles for hexavalent chromium removal. Sci. Total. Environ. 752, 141850 (2021)

    CAS  Google Scholar 

  10. J. Shen, S. Zhang, Z. Zeng, J. Huang, Yi. Shen, Y. Guo, Synthesis of magnetic short-channel mesoporous silica SBA-15 modified with a polypyrrole/polyaniline copolymer for the removal of mercury ions from aqueous solution. ACS Omega 6(39), 25791–25806 (2021)

    CAS  Google Scholar 

  11. V.D. Thao, L.G. Bach, V.T. Tran, Free-standing polypyrrole/polyaniline composite film fabricated by interfacial polymerization at the vapor/liquid interface for enhanced hexavalent chromium adsorption. RSC Adv. 9(10), 5445–5452 (2019)

    CAS  Google Scholar 

  12. S. Prashanna Suvaitha, K. Venkatachalam, A study of kinetics, thermodynamics, and adsorption isotherms of food and textile dyes removal with SBA-15 supported polyaniline nanocomposite. Water Air Soil Pollut. 234(4), 264 (2023)

    CAS  Google Scholar 

  13. R. Thilak Kumar, S. Umamaheswari, FTIR, FTR and UV-Vis analysis of carbamazepine. Res J. Pharm. Biol. Chem. Sci 2, 685–693 (2011)

    Google Scholar 

  14. S. Hashemikia, N. Hemmatinejad, E. Ahmadi, M. Montazer, Optimization of tetracycline hydrochloride adsorption on amino modified SBA-15 using response surface methodology. J. Colloid Interface Sci. 1(443), 105–114 (2014)

    Google Scholar 

  15. D. Dilek, U. Beker, Cr (VI) adsorption onto biomass waste material-derived activated carbon, in Desalination updates. ed. by R.Y. Ning (IntechOpen, London, 2015), pp.273–302

    Google Scholar 

  16. M.K. Seliem, S. Komarneni, M.R. Abu Khadra, Phosphate removal from solution by composite of MCM-41 silica with rice husk: kinetic and equilibrium studies. Microporous Mesoporous Mater. 224, 51–57 (2016)

    CAS  Google Scholar 

  17. A. Shahbazi, H. Younesi, A. Badiei, Functionalized SBA-15 mesoporous silica by melamine-based dendrimer amines for adsorptive characteristics of Pb (II), Cu (II) and Cd (II) heavy metal ions in batch and fixed bed column. Chem. Eng. J. 168(2), 505–518 (2011)

    CAS  Google Scholar 

  18. R. Seema, K. Sumanjit, R.K. Mahajan, Synthesis of mesoporous material SBA-3 for adsorption of dye congo red. Desalin. Water Treat. 57(8), 3720–3731 (2016)

    Google Scholar 

  19. K. Inderpreet, D. Mandiyal, B. Pal Singh, R. Kumar, J. Chawla, Amino-functionalized mesoporous MCM-41: an efficient adsorbent for the removal of chromium (III) ions from aqueous solution. J. Water Supp. Res. Technol. AQUA 65(6), 480–493 (2016)

    Google Scholar 

  20. M. Maryam, A. Rashidi, H.A. Tayebi, M.E. Yazdanshenas, Removal of anionic dye from aqueous media by adsorption onto SBA-15/polyamidoamine dendrimer hybrid: adsorption equilibrium and kinetics. J. Chem. Eng. Data 62(4), 1365–1376 (2017)

    Google Scholar 

  21. E.A. Newton, N. Ayawei, D. Wankasi, Interpretation of adsorption thermodynamics and kinetics. Open J. Phys. Chem. 10(3), 166–182 (2020)

    Google Scholar 

  22. M.A. Ibrahim, A.A.S. Mohammed, R.H. Yaseen, A.H. Haitham, M.A. Khalid, J.M. Sabah, H.M. Mohd, A.H. Hassimi, Simultaneous adsorption of ternary antibiotics (Levofloxacin, Meropenem, and Tetracycline) by sunflower husk coated with copper oxide nanoparticles. J. Ecol. Eng. (2022).

    Article  Google Scholar 

  23. C. Saka, Ö. Şahin, H. Adsoy, ŞM. Akyel, Removal of methylene blue from aqueous solutions by using cold plasma, microwave radiation and formaldehyde treated acorn shell. Sep. Sci. Technol. 47(10), 1542–1551 (2012)

    CAS  Google Scholar 

  24. M.S. Salman, S.A. Hasanain, A.A. Qahtan, J.M.R. Mohanad, J.M. Sabah, M.A. Khalid, Cladophora algae modified with CuO nanoparticles for tetracycline removal from aqueous solutions. Water Air Soil Pollut. 233(8), 321 (2022)

    CAS  Google Scholar 

  25. S. Shariati, A. Chinevari, M. Ghorbani, Simultaneous removal of four dye pollutants in mixture using amine functionalized Kit-6 silica mesoporous magnetic nanocomposite. SILICON 2, 1865–1878 (2020)

    Google Scholar 

  26. Z. Esvandi, R. Foroutan, S.J. Peighambardoust, A. Akbari, B. Ramavandi, Uptake of anionic and cationic dyes from water using natural clay and clay/starch/MnFe2O4 magnetic nanocomposite. Surfaces Interfaces 21, 100754 (2020)

    CAS  Google Scholar 

  27. H.O. Chukwuemeka-Okorie, F.K. Ekuma, K.G. Akpomie, J.C. Nnaji, A.G. Okereafor, Adsorption of tartrazine and sunset yellow anionic dyes onto activated carbon derived from cassava sievate biomass. Appl Water Sci 11, 27 (2021)

    CAS  Google Scholar 

  28. R. El-Sharkawy, H.A. El-Ghamry, Multi-walled carbon nanotubes decorated with Cu (II) triazole Schiff base complex for adsorptive removal of synthetic dyes. J. Mol. Liq. 282, 515–526 (2019)

    CAS  Google Scholar 

  29. Y. Song, R. Peng, L. Gou, M. Ye, Removal of sunset yellow by methanol modified walnut shell. Iran. J. Chem. Chem. Eng.J. Chem. Chem. Eng. 40(4), 1095–1104 (2021)

    CAS  Google Scholar 

  30. M. Tayebeh, Kn. Gholamreza, Application of magnesium oxide nanoparticles for sunset yellow removal in aqueous solutions: adsorption isotherm, kinetic and thermodynamic studies. Iran. J. Chem. Chem. Eng. 41(12), 3939–3949 (2022)

    Google Scholar 

  31. M.E. Mahmoud, A.M. Abdelfattah, R.M. Tharwat, G.M. Nabil, Adsorption of negatively charged food tartrazine and sunset yellow dyes onto positively charged triethylenetetramine biochar: optimization, kinetics and thermodynamic study. J. Mol. Liq. 318, 114297 (2020)

    CAS  Google Scholar 

  32. G.A. Tabi, L.N.R. Blaise, K. Daouda, A.N. Odogu, A.A. Victoire, N.N. Julius, K.J. Mbadcam, Non-linear modelling of the adsorption of Indigo Carmine dye from wastewater onto characterized activated carbon/volcanic ash composite. Arab. J. Chem. 15, 103515 (2022)

    Google Scholar 

  33. M. El-Kammah, E. Elkhatib, S. Gouveia, C. Cameselle, E. Aboukila, Enhanced removal of Indigo Carmine dye from textile effluent using green cost-efficient nanomaterial: adsorption, kinetics, thermodynamics and mechanisms. Sustain. Chem. Pharm. 29, 100753 (2022)

    CAS  Google Scholar 

  34. A.O. Dada, F.A. Adekola, E.O. Odebunmi, F.E. Dada, O.M. Bello, B.A. Akinyemi, O.S. Bello, O.G. Umukoro, Sustainable and low-cost Ocimumgratissimum for biosorption of indigo carmine dye: kinetics, isotherm and thermodynamic studies. Int. J. Phytoremediation 22(14), 1–14 (2020)

    Google Scholar 

  35. A.N. Babu, D. Srinivasa Reddy, P. Sharma, G. Suresh Kumar, K. Ravindhranath, G.V. Krishna Mohan, Removal of hazardous indigo carmine dye from waste water using treated red mud. Mater. Today Proc. 17, 198–208 (2019)

    CAS  Google Scholar 

  36. S. Bhowmik, V. Chakraborty, P. Das, Batch adsorption of indigo carmine on activated carbon prepared from sawdust: a comparative study and optimization of operating conditions using response surface methodology. Res. Surfaces Interfaces 3, 100011 (2021)

    Google Scholar 

  37. R.M. Ferreira, N.M. de Oliveira, L.L.S. Lima, A.L.D.M. Campista, D.M.A. Stapelfeld, Adsorption of indigo carmine on Pistia stratiotes dry biomass chemically modified. Environ. Sci. Pollut. Res. 26, 28614–28621 (2019)

    CAS  Google Scholar 

  38. M. Adel, M.A. Ahmed, A.A. Mohamed, Effective removal of indigo carmine dye from wastewaters by adsorption onto mesoporous magnesium ferrite nanoparticles. Environ. Nanotechnol. Monit. Manag. 16, 100550 (2021)

    CAS  Google Scholar 

  39. D. Sikdar, S. Goswami, P. Das, Activated carbonaceous materials from tea waste and its removal capacity of indigo carmine present in solution: synthesis, batch and optimization study. Sustain. Environ. Res. 30, 30 (2020)

    CAS  Google Scholar 

  40. J. Mittal, R. Ahmad, A. Mittal, Kahwa tea (Camellia sinensis) carbon—a novel and green low-cost adsorbent for the sequestration of Titan yellow dye from its aqueous solutions. Desalin. Water Treat. 227, 404–411 (2021)

    CAS  Google Scholar 

  41. M. El-Azazy, S.N. Dimassi, A.S. El-Shafie, A.A. Issa, Bio-waste aloe vera leaves as an efficient adsorbent for titan yellow from wastewater: structuring of a novel adsorbent using plackett-burman factorial design. Appl. Sci. 9, 4856 (2019)

    CAS  Google Scholar 

  42. M.A. Salem, I.A. Salem, M.G. Hanfy, A.B. Zaki, Removal of titan yellow dye from aq. solutions with polyaniline/Fe3O4 nanocomposite. Eur. Chem. Bull. 5(3), 113–118 (2016)

    CAS  Google Scholar 

  43. P. Pietrzyk, N.T. Phuong, S.J. Olusegun, N. Hong Nam, D.T.M. Thanh, M. Giersig, P. Krysinski, M. Osial, Titan yellow and congo red removal with superparamagnetic iron-oxide-based nanoparticles doped with zinc. Magnetochemistry 8, 91 (2021)

    Google Scholar 

  44. A. Malik, A. Khan, N. Shah, M.S. Khan, The kinetics and equilibrium thermodynamics study on the removal of direct blue and titan yellow dyes from aqueous media by modified rice husk char. Z. Phys. Chem. 2019, 10 (2019)

    Google Scholar 

  45. P.B. Sibanda, S. Majoni, L.L. Sibali, H. Chiririwa, Kinetics and equilibrium adsorption studies of removal of anionic dyes from water using calcined layered double hydroxides. Poll. Res. 40(1), 308–316 (2021)

    CAS  Google Scholar 

  46. S. Banerjee, M.C. Chattopadhyaya, Y.C. Sharma, Removal of an azo dye (Orange G) from aqueous solution using modified sawdust. J. Water Sanit. Hyg. Dev. 5(2), 235–243 (2015)

    Google Scholar 

  47. A. Malik, A. Khan, M. Humayun, Preparation and chemical modification of rice husk char for the removal of a toxic dye (orange G) from aqueous medium. Z. Phys. Chem. 233, 375 (2018)

    Google Scholar 

  48. Z. Gao, L. Zhang, X. Shi, J. Yang, X. Wang, Study on the adsorption of orange G dye by the PA65 with pore structure. Water Air Soil Pollut. 234, 230 (2023)

    CAS  Google Scholar 

  49. S. Prakash, K.V. Sanjay, Decolourization of orange G dye by microalgae acutodesmus obliquus strain PSV2 isolated from textile industrial site. Int. J. Appl. Sci. Biotechnol. 1(4), 47–252 (2013)

    Google Scholar 

  50. B. Amit, A.K. Minocha, J. Byong-Hun, P. Ju-Myon, L. Giehyeon, A adsorption of orange G dye on paper mill sludge: equilibrium and kinetic modeling. Fresenius Environ. Bull. 16, 1049–1055 (2007)

    Google Scholar 

  51. M. Arulkumar, P. Sathishkumar, T. Palvannan, Optimization of Orange G dye adsorption by activated carbon of Thespesia populnea pods using response surface methodology. J. Hazard. Mater. 186(1), 827–834 (2011)

    CAS  Google Scholar 

  52. A.A. Atia, A.M. Donia, W.A. Al-Amrani, Adsorption/desorption behavior of acid orange 10 on magnetic silica modified with amine groups. Chem. Eng. J. 150(1), 55–62 (2009)

    CAS  Google Scholar 

  53. I.D. Mall, V.C. Srivastava, N.K. Agarwal, Removal of orange-G and methyl violet dyes by adsorption onto bagasse fly ash kinetic study and equilibrium isotherm analyses. Dyes Pigments 69(3), 210–223 (2006)

    CAS  Google Scholar 

Download references

Funding

The authors gratefully thank financial support from RUSA 2.0, India, Ref: No. C3/RI&QI/RUSA 2.0/Theme-2 Project/Award/2021/032 dt.:03.02.2021 (University of Madras).

Author information

Authors and Affiliations

Authors

Contributions

PSS had done the methodology part, formal analysis, investigation, and writing original draft preparation. VK had done the supervision, project administration and funding acquisition.

Corresponding author

Correspondence to K. Venkatachalam.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

This article does not involve any animal or human subject experiment.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suvaitha, S.P., Venkatachalam, K. Adsorptive separation of food and textile dyes from aqueous solution by SBA-15 supported polyaniline/polypyrrole composite: isotherms, kinetics, thermodynamics and recyclability study. J Mater Sci: Mater Electron 35, 94 (2024). https://doi.org/10.1007/s10854-023-11839-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11839-z

Navigation