Skip to main content
Log in

Hierarchical growth of CdSe dendritic nanostructures for enhanced field emission application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, a facile hydrothermal route has been presented for the hierarchical growth of CdSe dendritic nanostructures by varying reducing agent (hydrazine hydrate) volume % in the presence of EDTA as a complexing agent. The morphological transition from spherical to dendritic form has demonstrated remarkable improvement in the field emission performance of CdSe. The X-ray diffraction analysis indicates the formation of highly crystalline CdSe nanostructures with average crystallite size of about 13–18 nm which is well supported by Raman spectroscopy. Further, X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy analyses confirm the elemental composition of optimized material. The morphology of synthesized materials is confirmed by field emission scanning electron microscopy and transmission electron microscopy techniques. The optical analysis with UV–Vis spectroscopy (DRS mode) shows the band gap variation in the range of 1.68–1.71 eV and photoluminescence emission spectra display high-intensity band-edge emissions peak centred at 678 nm. Field emission studies indicate that the value of turn-on field for CdSe nanostructures is lowered from 5.4 to 3.75 V/µm (at 1 µA/cm2) with a reduction in threshold field value from 6.9 to 5.5 V/µm (at 10 µA/cm2) as an effect of morphological variation. The maximum current density shows a considerable rise to 92 µA/cm2 (at applied field 8.2 V/µm) from the initial value of 28 µA/cm2 (at 7.9 V/µm). Further, the promising field enhancement factor of 4016 is observed for CdSe dendritic nanostructures. Investigations presented herein clearly show the potential of synthesized material for field emission-based vacuum micro-electronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the paper and if required will be made available on request to the corresponding author.

References

  1. X. Duan, X. Liu, Q. Chen, H. Li, J. Li, X. Hu, Y. Li, J. Ma, W. Zheng, Dalton Trans. 40, 1924 (2011)

    Article  CAS  PubMed  Google Scholar 

  2. P. Chopade, S. Jagtap, S. Gosavi, Nanoscale compound semiconductors and their optoelectronic applications (Woodhead Publishing, Elsevier, 2022)

    Google Scholar 

  3. D. Alagarasan, S. Varadharajaperumal, K.D.A. Kumar, R. Naik, A. Arunkumar, R. Ganesan, G. Hegde, E.E.S. Massoud, Opt. Mat. 122, 111706 (2021)

    Article  CAS  Google Scholar 

  4. G. Patil, P. Baviskar, P. Chavan, J. Nanoelectron. Optoelectron. 14, 470 (2019)

    Article  CAS  Google Scholar 

  5. M. Kim, D. Kim, O. Kwon, H. Lee, Micromachines. 13, 269 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. M.A. Ahmad, M.F. Abdel-Messih, E.H. Ismail, J. Mater. Sci. Mater. Electron. 30, 17527 (2019)

    Article  Google Scholar 

  7. J. Chen, N. Sun, H. Chen, Y. Zhang, X. Wang, N. Zhou, Food Chem. 367, 130754 (2022)

    Article  CAS  PubMed  Google Scholar 

  8. P. Chopade, S. Jagtap, S. Gosavi, Functional materials from carbon, inorganic and organic sources, methods and advances (Woodhead Publishing, Elsiever, 2022)

    Google Scholar 

  9. P. Ravi, D.K. Kumaravel, D. Subramanian, D. Thoondyaiah, V.N. Rao, S.M. Venkatakrishnan, M. Sathish, ACS Appl. Energy Mater. 4, 13983 (2021)

    Article  CAS  Google Scholar 

  10. L. Zhao, Q. Pang, S. Yang, W. Ge, J. Wang, Phys. Lett. A 373, 2965 (2009)

    Article  ADS  CAS  Google Scholar 

  11. P. Xie, S. Xue, J. Wei, J. Han, W. Zhou, R. Zou, J. Solid State Chem. 234, 63 (2016)

    Article  ADS  CAS  Google Scholar 

  12. M.J. Capitan, J. Alvarez, S. Puebla, M.J. Spilsbury, J.J. Conde, R. Otero, RSC Adv. 9, 41531 (2019)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. R.B. Kale, S.-Y. Lu, J. Alloys Compd. 640, 504 (2015)

    Article  CAS  Google Scholar 

  14. A. Alasvand, H. Kafashan, J. Alloys Compd. 817, 152711 (2020)

    Article  CAS  Google Scholar 

  15. S. Sharma, D. Kumar, N. Khare, Polymer. 231, 124117 (2021)

    Article  CAS  Google Scholar 

  16. T. Zhang, C. Chena, Z. Liang, L. Wang, F. Gao, W. Yang, S. Chen, Appl. Surf. Sci. 507, 145146 (2020)

    Article  CAS  Google Scholar 

  17. X. Liu, R. Liu, S. Chen, B. Liang, Mater. Lett. 66, 264 (2012)

    Article  CAS  Google Scholar 

  18. J. Ma, W. Guo, X. Duan, T. Wang, W. Zheng, L. Chang, RSC Adv. 2, 5944 (2012)

    Article  ADS  CAS  Google Scholar 

  19. S.R. Bhopale, M.A. More, Phys. Status Solidi A 219, 2200126 (2022)

    Article  ADS  CAS  Google Scholar 

  20. P. Chopade, V. Kashid, N. Jawale, S. Rane, S. Jagtap, A. Kshirsagar, S. Gosavi, Phys. Chem. Chem. Phys. 25, 10567 (2023)

    Article  CAS  PubMed  Google Scholar 

  21. N. Rathee, N. Jaggi, J. Mater. Sci. Mater. Electron. 32, 9262 (2021)

    Article  CAS  Google Scholar 

  22. J.I. Langford, A.J.C. Wilson, J. Appl. Cryst. 11, 102 (1978)

    Article  ADS  CAS  Google Scholar 

  23. B. Feng, J. Cao, J. Yang, D. Han, S. Yang, Appl. Phys. A 118, 563 (2015)

    Article  ADS  CAS  Google Scholar 

  24. Y. Liu, J. Cao, C. Li, J. Zeng, K. Tang, Y. Qian, W. Zhang, J. Cryst. Growth. 261, 508 (2004)

    Article  ADS  CAS  Google Scholar 

  25. Q. Peng, Y. Dong, Z. Deng, Y. Li, Inorg. Chem. 41, 5249 (2002)

    Article  CAS  PubMed  Google Scholar 

  26. J. Rodriguez-Pereira, Surf. Sci. Spectra. 27, 014021 (2020). S. A. Rincón-Ortiz

    Article  ADS  Google Scholar 

  27. H. Hou, Q. Yang, C. Tan, X. Tian, Y. Xie, Mater. Lett. 59, 3364 (2005)

    Article  CAS  Google Scholar 

  28. N.N. Kurus, A.G. Milekhin, R.I. Sklyar, B.M. Saidzhonov, R.B. Vasiliev, S.V. Adichtchev, N.V. Surovtsev, A.V. Latyshev, D.R.T. Zahn, J. Phys. Chem. C 126, 7107 (2022)

    Article  CAS  Google Scholar 

  29. P.K. Sahu, R. Das, R. Lalwani, Appl. Phys. A 124, 665 (2018)

    Article  ADS  Google Scholar 

  30. R. Bai, S. Chaudhary, D.K. Pandya, AIP Conference Proceedings 1953, 030024 (2018)

  31. A. Salem, E. Saion, N.M. Al-Hada, H.M. Kamari, A. Halim Shaari, S. Radiman, Res. Phys. 7, 1175 (2017)

    Google Scholar 

  32. T. VanWie, E. Wysocki, J.R. McBride, S.J. Rosenthal, Chem. Mater. 31, 8558 (2019)

    Article  CAS  Google Scholar 

  33. S.D. Liang, Quantum Tunneling and Field electron Emission Theories (World Scientific, 2014), pp. 157–207

  34. W.E. Swank, Phys. Rev. 153, 844 (1967)

    Article  ADS  CAS  Google Scholar 

  35. L.J. Zhao, Q. Pang, Y. Cai, X.D. Luo, N. Wang, W.K. Ge, J.N. Wang, Y.P. Fang, X.G. Wen, S.H. Yang, AIP Conf. Proc. 893, 45 (2007)

  36. S.R. Bansode, M.A. More, R.B. Sharma, New. J. Chem. 47, 2273 (2023)

    Article  CAS  Google Scholar 

  37. M. Hafeez, T. Zhai, A.S. Bhatti, Y. Bando, D. Golberg, J. Phys. Chem. 116, 8297 (2012)

    Article  CAS  Google Scholar 

  38. S.R. Suryawanshi, P.K. Bankar, M.A. More, D.J. Late, RSC Adv. 5, 65274 (2015)

    Article  ADS  CAS  Google Scholar 

  39. S.R. Suryawanshi, S.N. Guin, A. Chatterjee, V. Kashid, M.A. More, D.J. Late, K. Biswas, J. Mater. Chem. C 4, 1096 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors PC and SRB are thankful to the Council of Scientific and Industrial Research, Govt. of India for providing CSIR-SRF.

Funding

The authors declare that no funds, grants or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by PC under the supervision of SG and SJ. Field emission studies are carried out by SB under the guidance of MM. The first draft of the manuscript was written by PC with application part edited by SB. All authors commented on the previous version of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Suresh Gosavi.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chopade, P., Bhopale, S., Jagtap, S. et al. Hierarchical growth of CdSe dendritic nanostructures for enhanced field emission application. J Mater Sci: Mater Electron 35, 161 (2024). https://doi.org/10.1007/s10854-023-11815-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11815-7

Navigation