Skip to main content
Log in

Facile synthesis and asymmetric device fabrication of zeolite like Co-MOF as a promising electrode material with improved cyclic stability

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A huge surface area, tuneable pore size and topologies, and variable periodic metal ions-imidazolate are some of the more evident advantages. Zeolitic imidazolate frameworks (ZIFs) have been identified as resourceful atoning templates for the production of functional materials and as modern electrodes for advanced storage systems. In this present investigation, we demonstrate the cobalt and 2-methylimidazole-connected hybrid framework, Zeolitic imidazolate framework- 67 (ZIF-67) nanocrystals (NCs) for electrochemical application. ZIF-67 NCs have been synthesized at room temperature by a facile and one-pot method. As-synthesized ZIF-67 NCs have been investigated by various analytical techniques. FT-IR has been employed to validate the existence of free Co and imidazolate bonds in ZIF-67 NCs. The SEM-EDS analyses exhibited uniform aggregated hexagonal-shaped nanoparticles and the composition of the elements. ZIF-67 exhibits uniform rhombic dodecahedron morphology, with a particle size of roughly 100 nm. These ZIF-67 NCs have been exploited as the functioning metal-based electrode in electrochemical studies, which demonstrate exceptional long-term stability with 84.98% of their discharge specific capacitance maintaining after 6000 cycles at a current density of 14 A g−1 in a three-electrode system and a specific capacitance value of 1068.62 F g−1 at the current density of 4 A g−1. In addition, the assembled asymmetric supercapacitor conveys a huge energy density of 17.47 Wh kg−1 and a power density of 1805.55 W kg−1. The capacitance retention rate of ZIF-67//AC material is still retaining 66.39% after 10,000 cycles, showing excellent cycle stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data sharing is not applicable.

References

  1. D. Gielen, F. Boshell, D. Saygin, M.D. Bazilian, N. Wagner, R. Gorini, Energy Strategy Rev. 24, 38–50 (2019). https://doi.org/10.1016/j.esr.2019.01.006

    Article  Google Scholar 

  2. B. Abu-Hijleh, N. Jaheen, Energy Strategy Rev. 24, 51–67 (2019). https://doi.org/10.1016/j.esr.2019.01.004

    Article  Google Scholar 

  3. A. Maksoud, M.I.A. Fahim, R.A. Shalan et al., Environ. Chem. Lett. 19, 375–439 (2021). https://doi.org/10.1007/s10311-020-01075-w

    Article  CAS  Google Scholar 

  4. Z. Liu, X. Yuan, S. Zhang et al., NPG Asia Mater. 11(1), 12 (2019). https://doi.org/10.1038/s41427-019-0112-3

    Article  CAS  Google Scholar 

  5. A. Zayed, A.L. Shaqsi, K. Sopian, A. Al-Hinai, Energy Rep. 6, 288–306 (2020). https://doi.org/10.1016/j.egyr.2020.07.028

    Article  Google Scholar 

  6. I. Hussain, S. Iqbal, C. Lamiel, A. Alfantazib, K. Zhang, J. Mater. Chem. A 10, 4475–4488 (2022). https://doi.org/10.1039/D1TA10213C

    Article  CAS  Google Scholar 

  7. J.W. Gittins, C.J. Balhatchet, S.M. Fairclough, A.C. Forse, Chem. Sci. 13, 9210–9219 (2022). https://doi.org/10.1039/D2SC03389E

    Article  CAS  Google Scholar 

  8. Z. Wu, D. Adekoya, X. Huang, M.J. Kiefel, J. Xie, W. Xu, Q. Zhang, D. Zhu, S. Zhang, ACS Nano. 14(9), 12016–12026 (2020). https://doi.org/10.1021/acsnano.0c05200

    Article  CAS  Google Scholar 

  9. Z. Cao, R. Momen, S. Tao et al., Nano-Micro Lett. 14, 181 (2022). https://doi.org/10.1007/s40820-022-00910-9

    Article  CAS  Google Scholar 

  10. X. Liu, G. Verma, Z. Chen, B. Hu, Q. Huang, H. Yang, S. Ma, X. Wang, Innovation 3, 100281 (2022). https://doi.org/10.1016/j.xinn.2022.100281

    Article  CAS  Google Scholar 

  11. Y. Sun, N. Zhang, Y. Yue, J. Xiao, X. Huang, A. Ishag, Environ. Sci. 9, 4069–4092 (2022). https://doi.org/10.1039/D2EN00601D

    Article  CAS  Google Scholar 

  12. V. Siva, A. Murugan, A. Shameem et al., J. Inorg. Organomet. Polym. (2022). https://doi.org/10.1007/s10904-022-02475-x

    Article  Google Scholar 

  13. S.S. Sankar, K. Karthick, K. Sangeetha, K. Karmakar, S. Kundu, ACS Omega. 5(1), 57–67 (2019). https://doi.org/10.1021/acsomega.9b03615

    Article  CAS  Google Scholar 

  14. F. Nouar, J. Eckert, J.F. Eubank, P. Forster, M. Eddaoudi, J. Am. Chem. Soc. 131(8), 2864–2870 (2009). https://doi.org/10.1021/ja807229a

    Article  CAS  Google Scholar 

  15. S. Feng, X. Zhang, D. Shi et al., Front. Chem. Sci. Eng. 15, 221–237 (2021). https://doi.org/10.1007/s11705-020-1927-8

    Article  CAS  Google Scholar 

  16. J. Cravillon, C.A. Schröder, H. Bux, A. Rothkirch, J. Caro, CrystEngComm 14(2), 492–498 (2012)

    Article  CAS  Google Scholar 

  17. Y. Chen, S. Tang, J. Solid State Chem. 276, 68–74 (2019)

    Article  CAS  Google Scholar 

  18. H.N. Abdelhamid, Curr. Med. Chem. 28(34), 7023–7075 (2021). https://doi.org/10.2174/0929867328666210608143703

    Article  CAS  Google Scholar 

  19. W. Sun, X. Zhai, L. Zhao, Chem. Eng. J. 289, 59–64 (2016). https://doi.org/10.1016/j.cej.2015.12.076

    Article  CAS  Google Scholar 

  20. K.B. Wang, Q. Xun, Q. Zhang, Energy Chem. 2(1), 100025 (2020)

    Article  CAS  Google Scholar 

  21. J. Qian, F. Sun, L. Qin, Mater. Lett. 82, 220–223 (2012). https://doi.org/10.1016/j.matlet.2012.05.077

    Article  CAS  Google Scholar 

  22. Z. Ma, J. Li, R. Ma, J. He, X. Song, Y. Yu, Y. Quan, G. Wang, New. J. Chem. 46, 7230–7241 (2022). https://doi.org/10.1039/D2NJ00646D

    Article  CAS  Google Scholar 

  23. P. Anil Kumar Reddy, H. Han, K.C. Kim, S. Bae, Chem. Eng. J. 471, 144608 (2023). https://doi.org/10.1016/j.cej.2023.144608

    Article  CAS  Google Scholar 

  24. A.H.A. Rahim, S.R. Majid, C.-K. Sim, S.N.F. Yusuf, Z. Osman, J. Indus Eng. Chem. 100, 248–259 (2021)

    Article  CAS  Google Scholar 

  25. A. Murugan, V. Siva, A. Shameem, S. Asath Bahadur, S. Sasikumar, N. Nallamuthu, J. Energy Storage. 28, 101194 (2020). https://doi.org/10.1016/j.est.2020.101194

    Article  Google Scholar 

  26. D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  CAS  Google Scholar 

  27. M.J. Frisch, G.W. Trucks, H.B. Schlegel et al., Gaussian 09, Revision A.02 (Gaussian, Inc., Wallingford, CT, 2016)

  28. R. Dennington, T.A. Keith, J.M. Millam, GaussView, Version 6.1 (Semichem Inc., Shawnee Mission, KS, 2016)

  29. H.T. Kwon, H.K. Jeong, A.S. Lee et al., J. Am. Chem. Soc. 137, 12304–12311 (2015). https://doi.org/10.1021/jacs.5b06730

    Article  CAS  Google Scholar 

  30. S. Sundriyal, V. Shrivastav, H. Kaur, S. Mishra, A. Deep, ACS Omega. 3, 17348–17358 (2018). http://pubs.acs.org/journal/acsodf

    Article  CAS  Google Scholar 

  31. E. Ratna et al., IntechOpen (2019). https://doi.org/10.5772/intechopen.84691

    Article  Google Scholar 

  32. K. Zhou, B. Mousavi, Z. Luo, S. Phatanasri, S. Chaemchuen, F. Verpoort, J. Mater. Chem. A 5, 952–957 (2017). https://doi.org/10.1039/C6TA07860E

    Article  CAS  Google Scholar 

  33. N. Kurra, Q. Jiang, Supercapacitors, in Storing Energy, 2nd edn. (Elsevier, Amsterdam, 2022), pp.383–417

    Chapter  Google Scholar 

  34. Y. Han, C. Liu, W. Yue, A. Huang, Mater. Lett. 318, 132158 (2022)

    Article  CAS  Google Scholar 

  35. K.P. Cheng, R.J. Gu, L.X. Wen, RSC Adv. 10, 11681–11693 (2020). https://doi.org/10.1039/D0RA01411G

    Article  CAS  Google Scholar 

  36. V. Siva, A. Murugan, A. Shameem, S. Thangarasu, S. Kannan, S. Asath Bahadur, J. Mater. Chem. C 11, 3070–3085 (2023). https://doi.org/10.1039/D2TC03996F

    Article  CAS  Google Scholar 

  37. A. Shameem, P. Devendran, V. Siva, R. Packiaraj, N. Nallamuthu, S. Asath Bahadur, J. Mater. Sci. Mater. Electron. 30(4), 3305–3315 (2019)

    Article  CAS  Google Scholar 

  38. A. Shameem, P. Devendran, A. Murugan, V. Siva, S. Asath Bahadur, J. Energy Storage. 73, 108856 (2023). https://doi.org/10.1016/j.est.2023.108856

    Article  Google Scholar 

  39. V. Siva, A. Murugan, A. Shameem, S. Asath Bahadur, J. Mater. Sci. Mater. Electron. 31(22), 20472–20484 (2020)

    Article  Google Scholar 

  40. A. Hosseinian, A. Amjad, R. Hosseinzadeh-Khanmiri, E. Ghorbani-Kalhor, M. Babazadeh, E. Vessally, J. Mater. Sci. 28, 18040–18048 (2017). https://doi.org/10.1007/s10854-017-7747-z

    Article  CAS  Google Scholar 

  41. N.L. Torad, R.R. Salunkhe, Y. Li, H. Hamoudi, M. Imura, Y. Sakka, C.C. Hu, Y. Yamauchi, Chem. Eur. J. 20(26), 7895–7900 (2014). https://doi.org/10.1002/chem.201400089

    Article  CAS  Google Scholar 

  42. H. Lv, X. Zhang, F. Wang, G. Lv, T. Yu, M. Lv, J. Wang, Y. Zhai, J. Hu, J. Mater. Chem. A 8(28), 14287–14298 (2020). https://doi.org/10.1039/D0TA05062H

    Article  CAS  Google Scholar 

  43. L. Wang, H. Yang, G. Pan, L. Miao, S. Chen, Y. Song, Electrochim. Acta. 240, 16–23 (2017). https://doi.org/10.1016/j.electacta.2017.04.035

    Article  CAS  Google Scholar 

  44. R. Ahmad, N. Iqbal, M.M. Baig, T. Noor, G. Ali, I.H. Gul, Electrochim. Acta. 364, 137147 (2020). https://doi.org/10.1016/j.electacta.2020.137147

    Article  CAS  Google Scholar 

  45. M. Mayakkannan, A. Murugan, A. Shameem, J. Energy Storage. 44, 103257 (2021)

    Article  Google Scholar 

  46. W. Zhang, S. Fan, X. Li et al., Microchim. Acta. 187(1), 1–9 (2020)

    Article  Google Scholar 

  47. Q. Cheng, Z. Chen, Int. J. Electrochem. Sci. 8(6), 8282–8290 (2013). https://doi.org/10.1016/S1452-3981(23)12887-2

    Article  CAS  Google Scholar 

  48. A. Shameem, P. Devendran, V. Siva, A. Murugan, Sol. State Sci. 106, 106303 (2020)

    Article  CAS  Google Scholar 

  49. V. Siva, A. Murugan, A. Shameem, S. Thangarasu, S. Kannan, A. Raja, Int. J. Hydrog. Energy 48, 18856–18870 (2023)

    Article  CAS  Google Scholar 

  50. W.M.T. Ramya et al., J. Polym. Environ. 31, 1610–1627 (2023)

    Article  CAS  Google Scholar 

Download references

Funding

The Management of Karpagam Academy of Higher Education, Coimbatore provided financial support for one of the authors V. Siva, through the Seed Money scheme (No.: KAHE/R-Acad/A1/Seed Money/004, dt. 11/05/2022).

Author information

Authors and Affiliations

Authors

Contributions

VS—Original draft, Writing and Conceptualization; SS—Data interpretation, AM—Draft Writing; AS—Formal analysis; RMJ— Characterization; SB—Validation.

Corresponding author

Correspondence to V. Siva.

Ethics declarations

Competing interests

None.

Ethical Approval

(1) This material is the authors’ own original work, which has not been previously published elsewhere. (2) The paper is not currently being considered for publication elsewhere and the paper reflects the authors’ own research and analysis in a truthful and complete manner. (3) The paper reflects the authors’ own research and analysis in a truthful and complete manner. (4) The paper properly credits the meaningful contributions of co-authors and co-researchers. (5) All sources used are properly disclosed (correct citation). Literally copying of text must be indicated as such by using quotation marks and giving proper reference. (6) All authors have been personally and actively involved in substantial work leading to the paper, and will take public responsibility for its content.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siva, V., Sanjana, S., Murugan, A. et al. Facile synthesis and asymmetric device fabrication of zeolite like Co-MOF as a promising electrode material with improved cyclic stability. J Mater Sci: Mater Electron 35, 75 (2024). https://doi.org/10.1007/s10854-023-11801-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11801-z

Navigation